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Abstract—For the last few years, the major driving force behind the rapid performance improvement of SSDs has been the increment
of parallel bus channels between a flash controller and flash memory packages inside the solid-state drives (SSDs). However, there
are other internal parallelisms inside SSDs yet to be explored. In order to improve performance further by utilizing the parallelism, this
paper suggests request rescheduling and dynamic write request mapping. Simulation results with real workloads have shown that the
suggested schemes improve the performance of the SSDs by up to 15% without any additional hardware support.

Index Terms—Flash memory, I/O scheduling, parallelism, Solid-State Drives (SSDs).
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1 INTRODUCTION

REPLACING hard disk drives, where performance improve-
ment has faced the physical limitation due to mechanical

positioning components, flash-based solid-state drives (SSDs)
are becoming the mainstream high performance storage de-
vices because of their fast random access speed and superior
throughput, as well as low power consumption.

An SSD uses multiple flash memory packages which are
connected to a flash controller through parallelized multi-
channel buses. By increasing the bus channels, the performance
of SSDs has been improved rapidly over the last few years, so
that cutting-edge SSDs now show sustained read throughput
of up to 250MB/s and write throughput of up to 200MB/s.
However, the strong demand for storage devices with even
better performance remains due to the stiff increase of proces-
sor parallelism from the multicore technology.

Inside the current SSD architecture, there are other paral-
lelisms which have been of little concern yet. The state-of-
the-art flash memory packages have independently working
multiple dies inside, and each die contains multiple planes
which operate simultaneously [1][2]. This integration provides
a large storage capacity within restricted space and improves
the performance. However, this parallelism can be fully uti-
lized only when the planes on a single die perform operations
of the same type at the same time. Moreover, a plane provides
a command pipeline to expedite the process of queued requests
[3]. However, this command pipelining achieves a performance
boost only when consecutive requests are of the same type.
Therefore, the effectiveness of plane-level parallelism strongly
depends on the pattern of request sequence.

Due to the nature of flash memory, which does not support
in-place updates, SSDs use a hard disk emulation layer called
an FTL (Flash Translation Layer). The FTL maps externally seen
logical pages to internally used physical pages. Because the
FTL does not consider the queue status of outstanding requests
at plane-, die-, and flash package-level, uneven request distri-
bution among planes, dies, or flash packages may occur during
write request mapping. Unsurprisingly, performance signifi-
cantly decreases with such uneven write request distribution,
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Fig. 1. SSD block diagram

which causes long waiting time in a queue for both read and
write requests.

In this paper, we suggest request rescheduling and dynamic
write mapping approaches to exploit the internal parallelism of
SSDs to boost the performance by overcoming the problems
described. Request rescheduling reorders the outstanding re-
quests in the request queue to improve the plane-level paral-
lelism more effectively. The dynamic write mapping algorithms
reduce queue delays of requests inside SSDs reflecting the
status of each parallel components. These schemes are expected
to result in shorter response times for SSDs.

2 BACKGROUND
SSDs are storage devices that use flash memory as their storage
media. They have the standard host interfaces as well as the
form-factors of ordinary hard disks.

Both read and write operations on flash memory are pro-
cessed by a page unit, which is usually 2KB in size. Different
from traditional storage media, such as hard disks or DRAM,
flash memory pages must be erased before rewriting on them.
However, the unit of an erase operation is different from that
of a read or write operation. An erase block generally consists
of 64 consecutive physical pages. Because of this behavioral
difference of flash memory, SSDs employ the FTL, which maps
a logical page to a physical page. The FTL allocates free
physical pages which have already been erased, to write new
data when a write request arrives.

As shown in Figure 1, an SSD has an embedded processor
that manages the FTL and external interface, along with a flash
controller, which connects flash memory packages through a
multi-channel bus. A flash controller can issue a command
through each channel independently.
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Fig. 2. Flash package organization

Each flash package consists of multiple dies as shown in
Fig. 2. Each die contains multiple planes, which have physical
pages inside. Although each die is able to perform a read,
write or erase operation independently, all the planes on a die
can only carry out the same type of operation at one time. A
command that makes two planes work simultaneously is called
a two-plane command, and a command that makes n planes
work at the same time is called an n-plane command. Currently,
the most widely used configuration is a die with two or four
planes with the two-plane command. The increased number
of planes will also inflate the importance of effective use of
n-plane commands for the performance of SSDs.

Every plane contains a register called the data register,
which temporally stores a page before issuing a read or write
command. When a plane processes a write command, data is
first transferred from the controller to the data register, which
usually takes about 50μs. After that, the data stored in the data
register is written to the corresponding physical page, which
takes about 250μs. On the other hand, when reading a physical
page, the data is read from a physical page into the data
register, which takes about 25μs, and then transferred from the
data register to the controller, again, which takes about 50μs.

In each plane, there is another register called the cache regis-
ter for pipelining the consecutive commands. While processing
a series of write commands, the cache register temporally stores
data to write until the data register becomes available after
finishing writing the previous data. On the other hand, when
processing consecutive read commands, the cache register is
used to store data temporally before sending it to the flash
controller. While a page is read from a physical page to the
data register, the cache register transfers the previous read data
that was sent from the data register. This command pipelining
improves the performance significantly when the consecutive
commands are of the same type.

The host interfaces of recent SSDs provide outstanding re-
quest queues by Native Command Queuing (NCQ) standard of
SATAII interface. Generally, the SSDs with the NCQ feature can
store up to 32 outstanding requests. For traditional hard disks,
request queues are used to reduce disk head movement by
reordering the outstanding requests. However, in comparison,
methods for managing outstanding request queues in SSDs
have not yet been as actively researched up until now.

3 PARALLELISM-AWARE REQUEST PROCESSING
3.1 Request Rescheduling
Although both the n-plane command and the command
pipelining of flash packages have significantly enhanced the
performance of flash memory packages [3], the ordinary re-
quest sequence, which has no consideration for those features,
will not fully utilize them. Therefore, we suggest two request
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rescheduling schemes, Multi-plane rescheduling and Pipeline
rescheduling.

Multi-plane rescheduling reorders outstanding requests in
order to assign requests of the same type to as many planes in a
die as possible. Fig. 3 (a) depicts an example of the multi-plane
rescheduling scheme. If the requests in the request queue were
issued sequentially as listed in the queue, requests R1 and R2
cannot be executed by using a two-plane command although
the target plane of R2 is idle because read and write commands
cannot be executed on a single die at the same time. Thus, R1
and R2 must be executed sequentially. However, by scheduling
R4 with R1, both requests are allowed to run simultaneously
with a single two-plane read command.

When a flash package starts to execute a request, the multi-
plane rescheduling scheme looks up the next request in the
queue that is of the same request type, and has a different
target plane on the same die. If there exists a request in the
queue that meets those two conditions, the flash controller
executes both requests with an n-plane command at one time.

The command pipelining does not bring a performance boost
when read and write commands are interchanged with each
other because the next command can not start until both the
data and cache registers become available after finishing the
previous command. To boost the effectiveness of command
pipelining in a plane, consecutive requests should have the
same operation type where possible. Pipeline rescheduling
reorders outstanding requests in the request queue so as to
reduce the number of operation type changes.

Fig. 3 (b) presents an example of the pipeline rescheduling
scheme. Requests R1, R2, R3, and R4 are headed to plane 0 in
die 1. However, R1, R2, and R3 cannot be pipelined because
R2 is a write request while both R1 and R3 are read requests.
By rescheduling R2 after R4, the requests of R1, R3 and R4 all
have the same operation type. Therefore, the time to transfer
data to the flash controller for R1 and R3 can be overlapped
by the time to read physical pages for R3 and R4, respectively.

When there is data dependency between two outstanding
commands, both of the suggested rescheduling schemes pre-
serve the order of those commands to maintain the integrity
of the data.

3.2 Dynamic Write Mapping
When a write request arrives, the FTL decides the physical
location of pages for the request. To obtain a free physical
page to write new data, the FTL determines which package,
die, and plane will be used with a predefined algorithm.
The algorithm can make decisions based on the logical page
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addresses of requests [4]. However, because this static mapping
algorithm is blind to the request queue status or the paral-
lelized architecture inside flash storage components, it does not
fully exploit the parallelisms in reducing queue delays. Our
approach, the dynamic write mapping scheme, distributes the
outstanding write requests with the consideration of dynamic
queue status changes or parallel architectures inside SSDs.

We explore three different heuristic algorithms for the dy-
namic write mapping approach. First, the shortest-queue-first
algorithm maps the write requests to the least loaded die
among whole packages. Second, the shortest-estimation-time-first
algorithm maps the write request to the die with the shortest
estimated completion time of the queued requests in each die.
These two policies prioritize the response time of the write
requests. Thus, we expect that these algorithms lessen the
write response time but, because consecutive read requests
can flow into few numbers of less loaded packages and dies,
they may have slow response time of read requests. Third,
the multi-level stripe mapping considers the internal structure
of flash storage components when deciding write locations.
It distributes the requests according to the parallelism level
of the components. It prioritizes channel striping and, within
the same channel, it performs package striping, and then die
and plane striping. For example, the i-th request is assigned to
the channel number (i mod total number of channel). In turn,
the request will be assigned to the package number ((i / total
number of channel) mod total number of packages per channel)
within the channel number (i mod total number of channel).
In the same manner, die and plane number are assigned to
the request. This mapping policy fully utilizes the parallelism
of storage components when distributing the write requests,
and the read requests will also be expected to benefit from its
parallelism-aware distribution.

Dirik and Jacob [5] used a simple write mapping algorithm
that maps a write request to free packages in a round-robin
manner based on the sequence number of the write request.
However, different from their algorithm, our approach takes
the sub-package-level parallelisms into consideration. In ad-
dition to that, our approach considers not only the sequence
number, but also the dynamic changes of load distribution due
to the existence of pre-issued read and erase operations.

4 EVALUATION
4.1 Environment
We implemented an SSD simulator with parameters listed in
Table 1 and integrated with Disksim 4.0 [6]. Both synthetic
and real workloads are used in our evaluation. The real work-
loads to be used in our evaluation were collected from the
iozone filesystem benchmark, the Openmail e-mail messaging
application, the SYSmark PC benchmark, and a web browser.
We assume a multicore processor environment, thus these
workloads are modified such that I/O requests are gathered
from four processes running on a quad-core processor. Table 2
presents the characteristics of the workloads evaluated.

4.2 Results
The effectiveness of the suggested request rescheduling
schemes are evaluated with synthetic workloads. Fig. 4 (a)
shows the improvement of average response time according
to the changes of read-to-write proportion of the workloads.
The multi-plane scheme is evaluated with two- and four-plane
command enabled hardware configurations, respectively.

TABLE 1
Parameters used in the SSD simulator

Parameter Value
Total capacity 120GB
The number of channels 16
The number of packages per channel 2
The number of dies per chip 4
The number of planes per die 4
The number of pages per block 64
Internal bus speed (x8) 25 ns
Page size 2 KB
Page read time 25 us
Page write time 250 us
Block erase time 1.5 ms
Host to SSD bus SATA II (300MB/s)
Request queue depth 32
FTL scheme Page-based mapping
Garbage collection policy Background running

with threshold of 5%
of total number of blocks

TABLE 2
Workload characteristics used in the evaluation

Name
Total RW ratio Average/median Consecutive

storage(read:write) request size (KB) requests (#)
(GB) Total Rd Wt Rd Wt

iozone 57.8 0.48 : 0.52 44.1 45.1 43.1 1.6 1.7/128 /128 /128

openmail 59.1 0.63 : 0.37 5.8 5.4 6.5 4.5 2.6/16 /16 /16

sysmark 100.1 0.58 : 0.42 30.0 24.7 37.2 15.0 11.1/36 /32 /128

web 66.7 0.24 : 0.76 24.0 8.5 28.9 17.7 55.3/14 /8 /24

The rescheduling schemes have insignificant effects when
most requests are reads because they only have few oppor-
tunities for reordering read requests with write requests. On
the other hand, when the proportion of write requests is
becoming high, the performance is gradually enhanced up
to 15.6% with the pipeline scheme and up to 5.4% with the
multi-plane scheme. The performance enhancement does not
shrink when the write requests are dominant. This is due to
the large amount of partial writes which induce a large amount
of internal page read operations. By reordering these internal
read operations with write operations, the effectiveness of our
schemes remain under write-dominant situations.

Fig 4 (b) illustrates the performance enhancement according
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Fig. 4. Response time improvement of synthetic workloads by
each request rescheduling scheme
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TABLE 3
Average response time improvement by request rescheduling and dynamic write mapping from the result of the SSD in Table 1

(Numbers in parentheses are differences from that without rescheduling.)

Request Rescheduling (%) Dynamic Write Mapping (%)
Without rescheduling Rescheduling Shortest- Shortest-est. Multi-level

Workload n-plane Cache reg. Both Multi-plane Pipeline Both queue-first -time-first Stripe
iozone 4.38 2.49 8.70 8.39 (4.01) 7.74 (5.35) 11.88 (3.18) -0.67 0.86 2.49

openmail 21.86 24.68 27.48 24.53 (2.67) 30.22 (5.54) 31.70 (4.22) 17.42 19.98 16.32
sysmark 5.46 5.82 11.12 5.98 (0.52) 7.38 (1.56) 13.29 (2.17) 14.49 14.57 14.64

web 19.69 15.03 34.73 20.55 (0.86) 15.41 (0.38) 35.87 (1.14) 6.18 6.12 6.24
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Fig. 5. Normalized response time of applying both request
rescheduling and dynamic write mapping together

to various request sizes. As the average request size is getting
smaller, the effectiveness of request rescheduling is becoming
larger because smaller request size induces more frequent
switches between page read and write operations in die-level,
which lead to more chances for request rescheduling.

In both of Fig 4 (a) and (b), the improvement from
multi-plane rescheduling is smaller than that from pipeline
rescheduling. However, if the number of planes continues
to grow, the effectiveness of multi-plane rescheduling will
increase as the number of integrated planes on a die grows.
In addition to this, when the size of a page doubles, since the
requests will be split into a smaller number of pages, we expect
that there will be more rescheduling opportunities that lead to
better performance improvement.

The evaluation results using the four real workloads are
illustrated in Table 3. The values in Table 3 denote the im-
provement of average response times from that of the default
configuration without both n-plane command sets and cache
registers. Because openmail has small request size, shown in
Table 2, it has more opportunities for reschedule than others.
Although iozone has large request size, the average number of
consecutive requests is small. This means that it has frequently
interleaved read and write requests. Because of this, it makes
better performance improvement than sysmark and web.

The suggested dynamic write mapping algorithms are com-
pared with the static stripe mapping. sysmark gains the
greatest improvement by applying dynamic write mapping
because its repetitive read and write requests on restricted
regions cause hot-spot dies, and the dynamic write mapping
algorithms effectively spread the requests over whole dies.
In web, because write requests are dominant, there are many
chances to apply the dynamic write mapping algorithms.

The effectiveness of multi-level stripe mapping increases
when request size is large, because interleaving large requests
over multiple planes, dies, or packages increase the chances

of using parallelized read operations when the data is read in
the future. On the contrary, when the request size is small, the
multi-level stripe shows the least improvement, as presented
in the openmail results. The large amount of small requests
raises the chances of uneven distribution of read requests, and
also write requests does not have the benefit of reducing the
response time from the multi-level stripe algorithm. Therefore,
the algorithms with consideration of the load distribution
perform better than the multi-level stripe algorithm.

Fig. 5 shows the overall performance after applying both
request rescheduling algorithms and the multi-level stripe
write mapping algorithm. After applying both of the suggested
schemes together, the response time of iozone, openmail,
sysmark and web are reduced by 7.2%, 10.3%, 14.9%, and
13.9%, respectively.

5 CONCLUSION AND FUTURE WORK
In spite of the significantly greater performance of SSDs com-
pared to that of hard disks, the rapidly increasing parallelism
of multicore processors is still firmly retaining the strong
demand for the improvement of SSDs as high performance
storage devices. This study suggested request rescheduling
and dynamic write mapping schemes to further improve the
performance of SSDs through enhancing parallelism.

Request rescheduling improves the plane-level concurrency
and the effectiveness of the command pipelining. Dynamic
write mapping reduces the response time of write requests by
spreading write requests over the entire dies in an SSD. We
showed that an SSD can benefit up to about 15% performance
improvement by applying both approaches together.

Based on the findings of our study, we will pursue research
on dynamic data redistribution. By redistributing stored data
among planes reflecting the actual reading patterns, which are
collected on the fly, the degree of parallelism is expected to be
further enhanced.
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