
How to Design Optimistic Operations
for Peer-to-peer Replication

Hyun-Gul Roh, Jin-Soo Kim, and Joon-Won Lee
Computer Science Division

Korea Advanced Institute of Science and Technology (KAIST)
Guseong-Dong, Yuseong-Gu, Daejeon 305-701, Korea
{hgroh@calab, jinsoo@cs, joon@cs}.kaist.ac.kr

Abstract
As collaboration over the Internet becomes an everyday
affair, it is increasingly important to provide high qual-
ity of interactivity. Distributed applications can repli-
cate collaborative objects at every site for the purpose of
achieving high interactivity. Replication, however, has a
fatal weakness that it is difficult to maintain consistency
among replicas. This paper introduces operation commu-
tativity as a key principle in designing operations in order
to manage distributed replicas consistent. In addition, we
suggest effective schemes that make operations commu-
tative using the relations of objects and operations. Fi-
nally, we apply our approaches to some simple replicated
abstract data types, and achieve their consistency without
serialization and locking.

Keywords: consistency, peer-to-peer replication, opera-
tion commutativity, optimistic operations

1. Introduction
Replication is a common technique to enhance perfor-
mance and responsiveness of distributed applications by
reading local replica and executing local operations imme-
diately[1]. Especially, collaborative applications with high
interactivity adopt replication in order to display interac-
tive data efficiently. Whenever each site modifies the ob-
jects by user interactions, it transfers operations to remote
sites for the purpose of notifying its modifications.

To minimize network delay, we assume that transfer-
ring operations among replicas is accomplished in a peer-
to-peer way, that is, no sequencer or master intervenes
between peers. In addition, for achieving higher quality
of interactivity, local operations are executed in an op-
timistic way without global arbitration such as locking.
Each site, however, may execute operations in a differ-
ent order, which leads to difficulty in maintaining con-
sistency among replicas. This paper suggests a way that
makes optimistic executions in different orders eventu-
ally identical without any locking or serialization.

As a key principle to make replicas consistent, we
introduce operation commutativity. Operation commuta-
tivity is the condition that every pair of operations is in

commutative relation. In this paper, we show why opera-
tion commutativity guarantees consistency among repli-
cas. Furthermore, we provide novel schemes which help
to achieving commutativity of operations. We first de-
fine relations between objects and operations. Then, we
present new orders, contemporary and obsolete orders,
which are useful to make optimistic operations commute
based on the relations. Finally, we actually exploit opera-
tion commutativity for some representative operations of
simple replicated abstract data types.

2. Operation Commutativity
This section theoretically analyzes the aspect that oper-
ations are executed in a peer-to-peer replication system.
As a key principle to make replicas consistent, we sug-
gest operation commutativity, and show what is opera-
tion commutativity and why it guarantees consistency of
replicas.

2.1. Operations in a distributed system
In a distributed system, an operation has either causal re-
lation(order) or concurrent relation with any other oper-
ation [2]. For example, from a time space diagram in
figure 1, we derive relations of every pair of operations
as follows: O1 ‖ O2, O1 ‖ O3, O1→ O4, O1 ‖ O5, O2

‖ O3, O2→ O4, O2→ O5, O3→ O4, O3 ‖ O5, O4 ‖
O5

1. Between two concurrent operations, no uniquely
correct order exists, because they are generated without
knowing each other. Causal order (causality), however,
must be preserved, because the later generated operation
might use the result of previously generated one. In fig-
ure 1, while site 0 and 1 preserve all of causal orders,
site 2 violates the causal order of O2 → O4. Causality
preservation can be achieved using the state vector issued
when the operation is generated [3]. Assume that N is
the number of sites, and sites are identified by integers
1, . . . , N . Each site n maintains an N -tuple state vector
SVn. Initially SVn[i] := 0, for 1 ≤ i ≤ N . After site n
executes an operation generated at site i, the site times-

1Oa → Ob denotes a causal relation(order), which means that Ob is
generated after observing Oa’s execution. Oa ‖ Ob denotes a concur-
rent relation, which means that both Oa and Ob are generated without
knowing the generation of each other.

O
1

O
2

O
3

O
4

O
5tim

e

Site 0 Site 1 Site 2

Figure 1: A time-space diagram that three sites participate in
and five operations are generated. Each operation is specified
with its state vector.

tamps its sequence number as SVn[i] := SVn[i] + 1. Let
O be an operation generated at site k and SVo be the last
timestamped state vector, which is transferred to other
sites with O. O is causally ready to be executed at site
l(k 6= l) with a state vector SVl only if the following
conditions are satisfied: (1) SVo[k] := SVl[k] + 1 (2)
SVo[i] ≤ SVl[i], for 1 ≤ i ≤ N and i 6= k. To preserve
causality, causally unready operations should be selec-
tively delayed.

2.2. Causally executable graph and sequences
In peer-to-peer replication, although we restrict execu-
tions of operations only to preserve causality, many ex-
ecution sequences are possible at each site. To analyze
the aspect of operation executions in peer-to-peer repli-
cation systems, a time-space diagram is useful. As a site
issues operations and they arrive at remote sites, a time-
space diagram is constituted and updated. If we capture
quiescence that all generated operations are executed at
all sites, we can build a time-space diagram, and it can
be effectively represented by borrowing graph notations.
Provided operations and their relations are denoted with
vertices and edges, respectively, we can define a graph
derived from a time-space diagram as follows:

Definition 1 Causally executable graph(CEG)
A graph G = (V, E) is a causally executable graph,
where V = {O1, . . ., On} is a set of operations, and
E ⊆ V × V is a set of edges between two operations
in V with directed edges, e.g., (Oa, Ob), which corre-
sponds to causal relations, e.g. Oa → Ob, and undi-
rected edges, e.g., 〈Oc, Od〉, which corresponds to con-
current relations, e.g. Oc ‖ Od, iff: G has edges for every
pair of distinct vertices (complete), and directed edges of
G are transitive, e.g., if (Oa, Ob) ∈ E and (Ob, Oc) ∈ E,
then (Oa, Oc) ∈ E.

From the time-space diagram in figure 1, we can ob-
tain a CEG as shown in figure 2. In this graph, if vertices
are traveled without going against directed edges, the ex-
ecution sequence does not violate causality. We therefore
can define an execution sequence which preserves causal-

O1

O2

O4 O5

O3

Figure 2: A causally executable graph derived from the time-
space diagram in figure 1.

ity and in which all operations participate as follows:2

Definition 2 (Causally executable sequence(CES))
Given a CEG, G = (V, E), where |V | = n, an execu-
tion sequence of operations, s: O1 7→ . . . 7→ On, is a
causally executable sequence from G, iff: all operations
of V participate only once in s, and for ∃Oi ∈ V and
∃Oj ∈ V for i < j in s, the relation of Oi and Oj is
either 〈Oj , Oi〉 ∈ E or 〈Oi, Oj〉 ∈ E or (Oi, Oj) ∈ E.

In peer-to-peer replication, when causality is preserved,
all CESs derived from a CEG are the whole possible ex-
ecution sequences which can be executed at any site.

2.3. Operation commutativity
Assuming that all sites in peer-to-peer replication exe-
cute one of CESs, and all CESs executed from the same
replica state yield an identical result, we can guarantee
consistency of replicas. Then, how can we make all CESs
produce the same result? We achieve it by letting all com-
binations of operations be in commutative relation, when
they are concurrent. We define commutative relation as
follows:3

Definition 3 (Commutative relation)
Given two concurrent operations Oa and Ob, they are in
commutative relation, expressed as Oa ↔ Ob, iff: for
RS0

Oa→Ob⇒ RS1 and RS0
Ob→Oa⇒ RS2, RS1 is equal to

RS2(RS1 = RS2).

Provided that all operations in concurrent relation are in
commutative relation, a CES can be transformed into an-
other CES by changing the execution order of two oper-
ations in concurrent relation. Then, we can ensure that
the results of the original CES and the changed CES are
identical. Repeating this process for the changed CES,
all CESs of a CEG are constituted and their results are
always identical. We therefore conclude that consistency
is guaranteed, if all operations in concurrent relation are
in commutative relation. Consequently, this paper define
operation commutativity as follows:

2If Oa is first executed, and Ob later, their execution sequence is
expressed by ’7→’ as Oa 7→ Ob.

3If an operation O(or an execution sequence) is executed on a
replica state RS0, thus RS0 is modified into RS1, we express this

execution as RS0
O⇒ RS1.

Definition 4 (Operation commutativity)
Given a set of operation types O, operation commutativ-
ity is established in O, iff: Oa ↔ Ob for ∀Oa, ∀Ob ∈ O,
when Oa ‖ Ob.

Due to space limitation, we omit the formal proof that
operation commutativity guarantees replica consistency.

Based on the definition of operation commutativity,
we suggest commutativity-based consistency maintain-
ing method. If an operation set is given for a replica-
tion system, this method pursues consistency by making
all combinations of concurrent operations commutative.
For instance, suppose that we have only Write and Ap-
pend operations. We need to make any pair of operations,
such as Write-Write, Write-Append, and Append-Append,
commutative, when they are concurrent.

3. Simple replicated abstract data types
In this section, three simple abstract data types(ADTs)
are presented to show how to design optimistic operations
in order to achieve operation commutativity.

First, we consider fixed-size replicated arrays which
support only Write operation. Write(int i, Object o) speci-
fies an integer index i to point to the position of the array
and an object o to be updated. To show that this repli-
cated ADT is consistent, we should design concurrent
Write operations are commutative with each other. To
illustrate, consider an example where each operation in
figure 3 is as follows:

e.g. 1 O1:Write(0, obj1), O2:Write(0, obj2), O3:Write(0, obj3)

If these operations are executed on a fixed-size empty ar-
ray, what should be the last array state of index 0?

Second, we consider an ADT maintained by only Ap-
pend operation like log data. An Append inserts a new
object o to the last position in the form of Append(Object
o). If three operations shown in e.g. 2 are executed on the
empty state as in figure 3, how can we make the order of
three appended objects consistent at all sites?

e.g. 2 O1:Append(obj1), O2:Append(obj2), O3:Append(obj3)

Finally, we take into account another ADT supporting
Write and Append operations together. This ADT per-
mits to modify appended objects by Write operation. In
this case, we should show that every possible combina-
tion of two operations, i.e., Write-Write, Write-Append,
and Append-Append, are commutative. If O1, O2, and
O3 in figure 3 are as follows and they are executed on an
empty state, how can we make them commutative?

e.g. 3 O1:Append(obj1), O2:Append(obj2), O3:Write(0, obj3)

In the above examples, if all operations are performed
without any conflict resolving rules, each site eventually
has an inconsistent replica. In the next section, through
presenting two design schemes, we answer the aforemen-
tioned three questions.

O1 [1,0,0]
O2 [0,1,0]

O3 [0,1,1]

Site 0 Site 1 Site 2

Figure 3: An example time-space diagram. Operations
are O1 ‖ O2, O1 ‖ O3, and O2 → O3

4. Designing Commutative Operations
4.1. Relations between objects and operations
When an operation is executed, it must have knowledge
of its previous concurrent operations in order to make
the operation commutative with them. As it might be
solved by recording the history of operations, operation
transformation algorithms use this approach. They, how-
ever, may require to compare an incoming operation with
many previous operations unnecessarily, and it is compli-
cated to find out the correct result[4].

Instead, we give conflict resolving clues to operations
in different way. Operations introduced in this paper deal
with only one object, and conflicts occur only when their
target objects are the same or adjacent.4 It is reasonable
to consider relations between objects and operations. If
we leave the state vectors of operations on its target ob-
ject after executing them, another operation can figure out
the relation between the operation and its target object
when it refers to the object. For example, after executing
O2 at site 1 in e.g. 1, O1 is concurrent with the object of
index 0. On the other hand, O3 is causal with the object
where O2 is executed at site 2.

4.2. Contemporary and obsolete orders
If an operation is in causal relation with its target ob-
ject(s), it must be executed according to its intention. In
e.g. 1, consider the execution sequence of site 2, O2 7→O3

7→O1. O3 is normally executed, because it is causal with
O2. When O1 is executed on the result of O2 7→ O3, O1

must arbitrate its execution to be commutative with not
only O3 but also with O2. However, because the object
of index 0 has the state vector of O3, O1 may not know
the effect of O2. We therefore design operations so that
operations can infer relations of all previously executed
operations. For this, two new orders, contemporary and
obsolete orders, are introduced as follows:

Definition 5 (Contemporary and obsolete orders)
Given two operations Oa and Ob, generated at site i and
j, with state vectors SVOa and SVOb

, respectively, Oa 7→
4A target object of an operation is defined as the objet which the op-

eration modifies. While the target object of Write is the object pointed
by an integer index, Append’s is the object inserted at the tail.

Ob is a contemporary order, and Ob 7→ Oa is an obsolete
order, iff: (1) sum(SVOa

) < sum(SVOb
), or (2) i < j

when sum(SVOa
) = sum(SVOb

), where sum(SV) =∑N−1
i=0 SV [i].

The conditions determining the orders are the same ones
used in the total ordering [3]. From the conditions of de-
tecting causality described in section 2.1, note that causal
order is always a contemporary order. In addition, con-
temporary order designates a globally unique order for
a concurrent relation. Then, the following design makes
concurrent Write operations commutative:

Design 1 (Write operation)
If a Write operation is a contemporary order with its tar-
get object, it replaces the object with its one, and if it is
an obsolete order with its target object, it is ignored.

Returning to the site 2 of e.g. 1, because O1 is an ob-
solete order with its target object after the execution of
O3, it is ignored. Although O2 is a contemporary order
with obj1 of O1, the state vector of obj3 tells that it need
not compare with the object of O1, because causal op-
eration of O2 is executed. In other words, since Writes
are executed as long as the state vector sums of their tar-
get objects increase, commutativity of concurrent Write
operations is guaranteed.

Using contemporary and obsolete orders, commuta-
tive Append operations can be designed as follows:

Design 2 (Append operation)
Compare the objects from the last object until it meets the
object of contemporary order, and insert the object after
the object of the first contemporary order.

In e.g. 2, O2 of site 2 can be executed commutatively not
only with O3 but also with O1 in similar effects of the
total ordering.

Then, supposing Write and Append are permitted to-
gether like e.g. 3, is operation commutativity established?
If we let each object reserve two state vectors dedicated
to each operation, Write-Write and Append-Append com-
mutativity is established. However, as in the case of e.g.
3, Write-Append is not commutative. This is caused by
the integer index system. Since concurrent Append op-
erations can change the object index targeted by a Write
operation, the Write misses its actual target object. To
make Write-Append commutative, we fix Write opera-
tion so that it find the causal object with itself after its
target object indexed by the Write if the object is con-
current relation with itself. This guarantees commutativ-
ity of Write-Append, because Appends of only concurrent
relation with the Write can push the object after the back
of the position where the Write are pointing.

5. Related work
Consistency of peer-to-peer replication has been mainly
studied in groupware or computer supported cooperative
work(CSCW) fields. Operation transformation(OT) is one
of main approaches to maintain consistency [5, 6, 7]. OT

transforms indexes of insertion and deletion operations in
receiving sites using histories of operations so as to pre-
serve intentions of operations. Although they have tried
to apply the concept of commutativity, they have gone
through many trial and error, because commutativity was
not completely formalized[4].

6. Conclusions and future work
As interactions over the Internet increase, providing higher
quality of interactivity becomes important. Although op-
timistic peer-to-peer replication is the most effective ar-
chitecture for interactivity, applications have avoided adopt-
ing it due to difficulty in maintaining consistency among
replicas. In this paper, we have presented a novel way to
design optimistic operations that make peer-to-peer repli-
cation consistent. As a key principle to achieve consis-
tency, we formalized operation commutativity and sug-
gested commutativity-based consistency maintaining method.
In addition, we have exploited operation commutativity
for some operation set of simple replicated ADTs.

As future work, we will consider more complicated
replicated ADTs employing richer operations such as in-
sertion and deletion.

Acknowledgements
This research was supported by the MIC(Ministry of In-
formation and Communication), Korea, under the ITRC
(Inofrmation Technology Research Center) support pro-
gram supervised by the IITA(Institute of Information Tech-
nology Assessment) (IITA-2005-C1090-0502-0031)

References
[1] Y. Saito and M. Shapiro. Optimistic replication. ACM Com-

puting Surveys, 37(1):42 – 81, Mar. 2005.

[2] L. Lamport. Time, clocks, and the ordering of events
in a distributed system. Communications of the ACM,
21(7):558 – 565, Jul. 1978.

[3] M. Raynal and M. Singhal. Logical time: capturing causal-
ity in distributed systems. IEEE Computer, 29(2):49 – 56,
Feb. 1996.

[4] C. Sun and C. (Skip) Ellis. Operational transformation in
real-time group editors: issues, algorithms, and achieve-
ments. In ACM CSCW’98 Proceedings, pages 59–68, Dec.
1998.

[5] C. Sun, X. Jia, Y. Zhang, Y. Yang, and D. Chen. Acheieving
convergence, causality preservation, and intention preser-
vation in real-time cooperative editing systems. ACM
Transactions on Computer-Human Interaction, 5(1):63 –
108, Mar. 1998.

[6] R. Li and D. Li. Commutativity-based concurrency control
in groupware. In CollaborateCom’05, pages 19–21, Dec.
2005.

[7] D. Li and R. Li. Ensuring content and intention consistency
in real-time group editors. In In IEEE ICDCS’04 Proceed-
ings, pages 748 – 755, Mar. 2004.

