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Abstract. Multicore processors promise higher throughput at lower
power consumption than single core processors. Thus in the near future
they will be widely used in hard real-time systems as the performance re-
quirements are increasing. Though DVS may reduce power consumption
for hard real time applications on single core processors, it introduces a
new implication for multicore systems since all the cores in a chip should
run at the same performance. Blind adoption of existing DVS algorithms
may result in waste of energy since a core which requires low performance
should run at the same high frequency with other cores. Based on the
existing partitioning algorithms for the multiprocessor hard real-time
scheduling, this article presents dynamic task repartitioning algorithm
that balances task loads among cores to avoid the phenomena dynami-
cally during execution. Simulation results show that in general cases our
scheme makes additional energy saving more than 10% than that without
our scheme even when the schedules are generated by WFD partition-
ing algorithm which is known as the best energy efficient partitioning
algorithm.

1 Introduction

The use of real-time systems are getting wider and the target applications are
getting more complex. Thus more powerful processors are demanded for real-
time systems. To improve processor performance the processor vendors have
competed to raise the operating frequencies of their processors. However the
power consumption of a processor is increased proportionally to the cubic of its
operating frequency f . Hence the power consumption of processors have been
increased dramatically. However The concern for energy efficiency has been in-
creased as the use of mobile equipments grows.

Multicore architecture[1] which integrates a few processor cores in a single
chip draws attention because it provides more throughput without increasing f .
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Similar to symmetric multiprocessors, multicore systems achieve linear speed-
up because each core has independent processing element and cache. Thus the
throughput increase of a multicore processor is expected to be linear with respect
to the increase of power consumption.

DVS(dynamic voltage scaling) is an another feature that changes Vdd and
f of a processor during its operation. Many of multicore processors are to be
expected to employ DVS. Current multicore technology offers a DVS feature that
allows only the same frequency for all cores because individual voltage regulator
for each core costs too much in both design and production. This limitation is
expected to remain for foreseeable future[2].

Then the energy efficient scheduling of real-time tasks in this environment
emerges. This problem is similar to that of the energy efficient real-time schedul-
ing on multiprocessors of having DVS function. It is known as a NP-hard problem
that scheduling hard real-time tasks for multiprocessors[3]. Thus many heuristic
algorithms are introduced to solve this. Among many heuristics, partitioning
scheduling [4–6] is one of the representative schemes which statically distributes
tasks onto each processor. By partitioning scheduling the problem is transformed
into single processor real-time scheduling problems which can be solved by us-
ing existing real-time schedulers like EDF(earliest deadline first)[5] or RM(rate-
monotonic)[6].

Adding energy efficiency to the real time task schedule for a multiprocessor
system has been a challenging problem. Most approaches depend on the idea[4,
7] of using existing single processor DVS algorithms[8–10] in each processor that
has its own task set which is given by a certain partitioning algorithm. Applying
those approaches to a multicore processor underperforms due to the aforemen-
tioned limitation of using DVS in multicore processor. Hence this paper suggests
a dynamic repartitioning algorithm to reduce the difference of demanded per-
formance among cores.

The rest of this paper is organized as follows. Section 2 reviews existing
related work especially on the DVS algorithm for the real-time schedule on a
processor. Section 3 describes the dynamic repartitioning problem and a heuris-
tic algorithm for it. Section 4 presents the simulation results of the suggested
algorithm. And section 5 summarizes our conclusions.

2 Related Work

EDF is an optimal algorithm in scheduling periodic real-time tasks on a proces-
sor. The utilization of a task is defined as its WCET(worst case execution time)
divided by its period and the utilization of a task set is the sum of the utilizations
of tasks in it. By using EDF it is guaranteed that the task set which have the
processor utilization under 1.0 is always feasible to schedule. The decrease of the
processor performance will increase WCET of each task. Thus lowering processor
performance will increase the utilization of the task set too. Due to the property
of EDF we can lower processor performance till the utilization of the task set
becomes 1 while the dead-lines are still kept. Based on this concept Pillai et.
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al.[10] suggested three heuristics, static, cycle-conserving and look-ahead, which
adjust processor performance for the real-time schedules that were generated by
EDF or RM algorithms.

Table 1. Example task set

Task Period WCET Load 1st Exec. Time 2nd Exec. TIme

τ1 8 ms 3 ms 0.375 2 ms 1 ms
τ2 10 ms 3 ms 0.300 1 ms 1 ms
τ3 14 ms 1 ms 0.071 1 ms 1 ms

static adjust performance to make the utilization of the task set to 1 and
stay in the decided performance level all the time. For example the utilization
of the task set described in Table 1 is 0.746 and let the maximum frequency of
the processor is 1.0. The lowered frequency of 0.746 make the utilization of the
task set 1.

In general the actual execution time of a task shows much difference from
the WCET of the task. The early completion of a task makes room for more
energy saving. For example let there be a task set described in Table 1, there
occur considerable amount of idle time with static algorithm. To exploit these
idle periods from the early completions of the tasks, when a task is completed
Cycle-conserving algorithm updates the utilization of the task as the actual
execution time divided by its period. Thus after the updates the performance
will be lowered according to the updated utilization and the updated value will
be used till the next release of that task. After the next release of the task, the
utilization of the task should be restored to its initial value to keep the dead-
line. This algorithm improves energy efficiency much in case that the actual
execution times tend to be much different from the WCETs. Figure 1 shows
using cycle-conserving algorithm for the example task set in 1.

(a) After end of τ1 (b) After end of τ2 and τ3 (c) Actual execution flow

Fig. 1. Cycle-conserving scheduling of example task set[10]

Because cycle-conserving algorithm dynamically utilizes the idle period from
the early completion of the tasks, it saves more energy than static algorithm.
However as depicted in Figure 1 (c) the tasks are executed at high performance
at the starting and the performance had decreased as time flowed and this made
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idle time again. If most of the tasks are finished in much less than WCET, it is
more effective to execute a task with lowered performance at the starting time
and to execute the task with raised performance after certain threshold to keep
the dead-line. Look-ahead algorithm is based on this idea.

In addition to this research, many DVS algorithms on periodic hard real-
time systems are suggested. Aydin et. al.[8] suggested GDRA(generic dynamic
reclaiming algorithm) and AGR(aggressive speed adjustment) algorithms to ex-
ploit the situation that the actual execution times are less than WCETs. The
basic concept of GDRA is similar to cycle-conserving and AGR tries performance
adjusting based on the execution history of tasks. The algorithm suggested by
Gruian[9] starts to execute a task at low performance and based on the proba-
bility distribution of the execution time, it gradually raises the performance as
the execution of the task goes on.

For the DVS scheduling on multiprocessor environment the basic approach
is that adopting the existing single processor DVS algorithms onto the results
from the partitioning algorithms. Aydin et. al.[4] also evaluated several parti-
tioning heuristics for the energy efficiency and the result showed that Worst-Fit-
Decreasing is the best energy efficient partitioning algorithm.

Yang et. al.[2] suggested an energy efficient static scheduling algorithm of
hard real-time tasks on the multicore processors including DVS which is the
same assumption in this paper. However it is based on the assumption that all
the tasks have same periods and the execution time will be always same.

3 DVS Scheduling on a Multicore Processor

3.1 Dynamic Repartitioning Problem

The aim of this work is devising an algorithm that reduces the waste of energy
due to the difference of performance demand among cores for executing periodic
real-time tasks on a multicore processor in which cores have same Vdd. The real-
time scheduling is assumed to be done by the partitioning approach. And our
algorithm will work on the resulting schedule dynamically during the execution.

The periodic task set T which is executed in the assumed environment is
defined as Equation 1. The Period of task τi is represented as Pi and Wi means
the WCET of τi. ui which is the task utilization of τi is defined as Wi/Pi.

T = {τ(P,W), . . . , τn(Pn,Wn)} (1)

The dead-lines of each task are assumed to be same as their periods. Tasks
have no dependency among them. The preemption and the migration of the
tasks among cores are possible. The cost for the preemption and migration is
assumed to be free because it can be considered in the actual implementation
stage.

A multicore processor is defined as Equation 2. Processor S have m cores C
in it.
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S = {C, . . . , Cm} (2)

Each core has a dedicated partitioned task set Tm. The utilization sum Um of
Tm belonged to a certain core m does not exceed 1.0. To be simple if cores are op-
erated at a relative performance p and the power consumption in a core is g(p), at
a certain point the power consumption in the processor is mg(max(U1, ..., Um)).
In real the cores in the idle period from unexpected early completion consume
only leakage power at the corresponding Vdd.

Performance of all cores are assumed to be decided by cycle-conserving algo-
rithm. Among the performance demand of cycle-conserving algorithm for each
core, the maximum is chosen for the performance of the whole cores. The addi-
tional power consumption compared to the multiprocessor systems occurs when
the performance demands of cores are different from those of each other. And
by using cycle-conserving the difference is dynamically changing according to
the actual execution time of the tasks. Thus we define dynamic utilization Ln of
core n as Equation 3. cci means the last execution time of τi at that time. Thus
the power consumption of a certain point is mg(max(L1, ..., Lm)). Energy con-
sumption is the product of time and power. As a result our aim can be defined
as maintaining L of all cores to have similar value all the time by dynamically
migrating tasks between cores because the execution times of each tasks are
meaningless as far as the dead-lines are kept.

Ln =
∑

∀completed τi

cci

Pi
+

∑

∀incompleted τi

Wi

Pi
(3)

3.2 A Heuristic Approach

In this section we suggest dynamic repartitioning heuristic algorithm as a solu-
tion to the problem in section 3.1. Algorithm 1 is the pseudo code of dynamic
repartitioning algorithm. Basic idea of the suggested algorithm is migrating tasks
from the cores which have high L to the cores having low L until all the cores
have similar L. This repartitioning occurs at the completion and the release of
the tasks.

Cores can be categorized into donator or grantee group. The two groups are
exclusive. In other words if a core is in donator group then it can not be in
grantee group. A core in donator group have tasks which is initially partitioned
to that core but migrated to some cores in grantee group. A core in grantee
group have tasks to run at that time which is not initially partitioned to that
core. By separating these two groups, the situations that a core give its task
to others and get tasks from others can be easily prevented. This makes the
algorithm work more effectively and in understandable manner.

As shown in line 28 and 35, L of a core is updated when tasks are completed
and released. If a task is released, algorithm checks that updated L is not over
1.0. When L is over 1.0 there should be migrated tasks from other cores in the
core. Thus all the migrated tasks are returned to their original cores. After this
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procedure repartitioning function will be called. Repartitioning function which
is described from line 12 to line 26 is actually doing migration job. It decides
the source core as the core with the highest L. If the source core in grantee
group then the source core should return the task with minimum utilization in
the source core to the initially partitioned core of the task. If the source core
is not grantee group then the source core will migrate the task which have the
lowest utilization in the source core to the destination core which is the minimum
utilization core among the cores not in the donator group. This procedure will
be repeated until L of the destination exceeds L of the source. When it happens
it can be thought that all cores have less differences of L than the lowest task
utilization in the core which has the minimum utilization at that time.

Whenever a migration occur or a task is released the algorithm checks that L
of the core with the incident does not exceed 1.0. If L of a certain core becomes
to exceed 1 then the migrated tasks in it will be restored to the cores in which
the tasks were scheduled initially. Thus suggested algorithm never breaks the
dead-lines by the property of EDF algorithm.

4 Evaluation

The suggested algorithm is evaluated by simulations. Our simulator uses several
partitioning algorithms like NFD(Next-Fit-Decreasing), FFD(First-Fit-Decreasing),
BFD(Best-Fit-Decreasing) and WFD. For comparison all the simulations were
done both with and without dynamic repartitioning algorithm.

There are many factors which affect the energy consumption. Based on the
related researches[10, 7, 4, 8, 9] we extracted major factors described in Table 2
which were changed to simulate the different situations. α means the upper limit
of the utilization which a task can get. The utilizations of tasks are randomly
generated and they follow the uniform distribution.

Table 2. Parameters used in the evaluations

Parameters Values

α 0.1, 0.3, 0.5

Number of Cores (m) 2, 4, 8, 16

Task Load (
∑m

i=1
Ui
m

) 0.1, 0.5, 0.9

Execution time (cc)
Normal distribution with

µ: {20, 50, 80}% of WCET and σ: 1/6

Figure 2 shows the difference of energy consumption according to the par-
titioning heuristics and the combination of each heuristic and the suggested
algorithm. The results are normalized to that of WFD without dynamic repar-
titioning. With the result we found that WFD performs better than the other



7

Algorithm 1 Dynamic task repartitioning algorithm

1 Cmax and Cmin each returns the core with the highest and the lowest L
2 Γ (C) returns a task τr such that:
3 ∀i where Π(τi) = Φ(τi) = C, (ui <= ur) ∧ (r ∈ i) ∧ (τr is ready to run)
4 Π(τ) means the core where τ is partitioned initially
5 Φ(τ) means the core where τ is currently located
6 D is the set of C such that:
7 ∃τ where Φ(τ) = C, Π(τ) 6= C /* Donator */
8 G is the set of C such that:
9 ∃τ where Π(τ) = C, Φ(τ) 6= C /* Grantee */

10 migrate(τ , C):
11 Φ(τ) ←− C;

12 repartitioning():
13 do
14 Csrc ←− Cmax;
15 if Csrc ∈ G
16 τl ←− Γ (Csrc);
17 Cdst ←− Π(τ);
18 migrate(τl, Cdst);
19 else
20 τl ←− Γ (Csrc);
21 Cdst ←− Cmin where Cmin /∈ D;
22 if (Ldst + ul) > 1
23 migrate(τ , Cdst);
24 else
25 break;
26 while (LCsrc > LCdst);

27 upon task release(τi):
28 Li ←− Wi/Pi;
29 if (LΦ(τi) > 1)
30 for each task τ ′ in Φ(τi)
31 if Π(τ ′) 6= Φ(τi)
32 migrate(τ ′, Π(τ ′));
33 repartitioning();

34 upon task completion(τi):
35 Li ←− cci/Pi; /* cci := actual used cycles */
36 repartitioning();
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heuristics in multicore systems too. However with dynamic repartitioning the
energy consumption of all heuristics become similar. By using dynamic reparti-
tioning algorithm combined with NFD which shows the worst energy efficiency
42% of energy was saved.
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(a) Task load = 0.5 (medium load)
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(b) Task load = 0.1 (low load)

Fig. 2. Normalized energy consumption according to the partitioning algorithms
(m = 4, α = 0.1, µ of cc = 20% of WCET)

As shown in Figure 2 in the low load the dynamic repartitioning did not
produce good results. Under low load all cores had low performance demands.
Thus there were little differences among the performance demands of the cores.
Due to that the benefits from dynamic repartitioning were little there.

In case that the task loads were over 0.5, as shown in Figure 3 (a),(b),(c)
and (d) the dynamic repartitioning worked better as the difference between cc
and WCET grew. This is because that more differences causes more changes
of L and thus the load balance among cores were more spoiled. We also found
that bigger α made dynamic repartitioning more effective. Small α means that
the length of WCET is relatively short compared to the period. Thus there is
relatively low margin of cc variance. Moreover the number of tasks increased
when the α decreased because the task load was fixed. The actual execution
time of a task is randomly decided at every rounds. If the number of task grows,
in macro view there is less change of L because more samples produce more
stable average value and L is an aggregation value of the random values.

The differences of demanding performance among cores tend to be greater
when the number of cores grows because many cores mean many different de-
manding performances at a certain time. Figure 4 shows the tendency. With
this result we can tell that while the number of cores grows, the benefit from
dynamic repartitioning also grows.

5 Conclusion

This paper introduces the problem of using DVS on a multicore processor which
has the limitation that all cores should run at the same performance level. As far
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(a) α = 0.1 Task Load = 0.5
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(b) α = 0.3 Task Load = 0.5

75

80

85

90

95

100

20% 50% 80%

the Proportion of Exection Time to WCET

N
o
r
m
a
l
i
z
e
d
 
E
n
e
r
g
y
 
C
o
n
s
u
m
p
t
i
o
n

Static Partitioning Dynamic Repartitioning

(c) α = 0.1 Task Load = 0.9
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(d) α = 0.3 Task Load = 0.9

Fig. 3. Normalized energy consumption (m = 4, WFD partitioned)
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(a) Task load = 0.9
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(b) Task load = 0.5

Fig. 4. Normalized energy consumption corresponding to the number of cores
(α = 0.1, WFD partitioned, µ of cc = 20% of WCET)
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as we know this problem is introduced in this paper for the first time. And as a
solution to that problem we suggest dynamic repartitioning algorithm based on
the partitioned schedule which have been used on the multiprocessor systems. To
reduce the energy consumption from unbalanced load of the cores the suggested
algorithm migrates tasks from high load cores to low load cores based on the
dynamically updated load when a task is released and completed.

The simulation results show that in general cases more than 10% of addi-
tional energy is saved even with WFD partitioning, the best energy efficient
partitioning algorithm. Moreover with other partitioning algorithm, up to 42%
of additional energy saving was achieved. No matter which partitioning method
is employed at the beginning, our scheme results in the same level of energy
consumption which is always more efficient than the best energy efficient parti-
tioning.

However the algorithm presented in this paper is blind to the purpose of a
system. Considering the fact that most mobile embedded system is targeted for
a specific purpose, each system is expected to have a specific set of tasks to
run. In the further work, we will develop more intelligent algorithms which are
tailored for the purpose of the target system.
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