
Improving Flash Cache Management for Virtualized System

Dong-Hyun Song†§ Youngjae Lee† Jin-Soo Kim†

†Sungkyunkwan University, Korea §Samsung Electronics, Korea
{songdh418, yjlee, jinsookim}@csl.skku.edu

Motivation: Flash-based solid state drives (SDDs) are in-
creasingly being used as a cache device in front of the back-
end storage based on hard disk drives (HDDs) to accelerate
I/O performance. In virtual environments, SSDs are widely
deployed as shared cache devices for guest virtual machines
(VMs). Previous studies have focused on cache space parti-
tioning algorithm between VMs. S-CAVE [1] proposed how
the hypervisor can fairly reallocate the cache space with a
cache demand metric, called rECS (ratio of Effective Cache
Space). However, S-CAVE did not consider the shared cache
blocks. In the case of a plurality of VMs created from one
base image, the same HDD blocks are requested frequently
by different VMs and cached in a private cache space of
each VM. A deficient cache management will reduce avail-
able cache space and degrade I/O performance. Therefore, the
hypervisor has to take into account cache partitioning poli-
cies and cache replacement algorithms with the shared cache
blocks to prevent I/O performance degradation.

Our Solutions: In this paper, we present a cache man-
agement architecture, which considers cache blocks shared
among VMs. Specifically, we propose two cache management
techniques: (1) a novel cache partitioning metric, called rCrS
(ratio of re-accessed cache blocks with ratio of shared cache
blocks), which provides better fairness than rECS, and (2) an
efficient cache replacement algorithm called T-CLOCK (Tag-
based CLOCK), which is an optimized CLOCK algorithm for
multiple VMs. In every time interval, the hypervisor chooses
two VMs by comparing the rCrS values of VMs to adjust their
cache space: one is the highest scored VM with increasing de-
mand; the other is the lowest scored VM with decreasing de-
mand. The private CLOCK hand of the victim VM finds and
evicts the coldest cache blocks forcefully using the T-CLOCK
algorithm. In order to implement our techniques we define a
global metadata array for all cached blocks.

Global Metadata: Each global metadata entry points to
a cache block address (CBA) of the SSD, which is mapping
with a logical block address (LBA) of the HDD by a hash ta-
ble. An entry consists of two fields: VM tag bits and CLOCK
bits. Each VM has one VM tag bit and one CLOCK bit as
a metadata. These bits indicate which VM has accessed and
re-accessed the corresponding cache block. Also they iden-
tify that the cache block is private to a VM or shared by VMs
through VM tag bits. Once a VM accesses a cache block, its
VM tag bit is set to 1. When the VM re-accesses the cache
block, its CLOCK bit is changed to 1. On the other hand, if
all bits are 0, the cache block is allocatable. If all CLOCK bits
are 0, the cache block is evictable.

VM tag bits CLOCK bits

empty block, allocatable

VM A(re-accessed),VM B(accessed), shared

A B C D A B C D

VM B(re-accessed), private

VM D(re-accessed), private

VM B(accessed),VM C(accessed), evictable

private CLOCK hands

global CLOCK hand

0 0 0 0 0 0 0 0

1 1 0 0 1 0 0 0

0 1 0 0 0 1 0 0

0 0 0 1 0 0 0 1

0 1 1 0 0 0 0 0

Figure 1: An example of global metadata array for 4 VMs
rCrS: The rCrS is an efficient cache partitioning metric

with shared cache blocks. This value is a product of two
ratios. The first one is the ratio of the number of re-accessed
cache blocks to the total number of private cache blocks
allocated to a VM. The second is the ratio of the number of
shared cache blocks to the total number of re-accessed cache
blocks. Even when the first ratio is lower than other VMs
ratios, if the second ratio is higher, the calculated rCrS value
can be higher than other VMs rCrS values. In other words,
our cache demand metric avoids choosing a VM with a higher
proportion of shared cache blocks as a victim.

T-CLOCK: The T-CLOCK algorithm tends to prolong the
lifetime of shared cache blocks. Whenever it needs a cache
space reduction or cache replacement, the private CLOCK
hand of each VM traverses the global metadata array to find
the coldest of the cache blocks. The private CLOCK hand
tests exclusively its CLOCK bit. If the CLOCK bit is 1, then
it is reset to 0 and the CLOCK hand will point to the next array
index. If all CLOCK bits are 0, then the T-CLOCK algorithm
reclaims the free cache block and the CLOCK hand points to
next index. However, if its own CLOCK bit is 0 but another
CLOCK bit is set to 1, this shared cache block survives until
all CLOCK bits becomes 0.

Evaluation: We evaluate the performance of the proposed
scheme on a trace-driven simulator with real-world traces.
We chose read intensive workloads and executed two work-
loads on two VMs separately with limited cache space. The
experimental results show that our solution achieves 31%-
63% higher cache hit ratios than S-CAVE. In addition, the
proposed scheme achieves 3.17x higher I/O throughput than
S-CAVE.

References: [1] Tian Luo, Siyuan Ma, Rubao Lee, Xi-
aodong Zhang, Deng Liu, and Li Zhou. S-CAVE: Effective
SSD Caching to Improve Virtual Machine Storage Perfor-
mance. In PACT13.

Improving Flash Cache Management for Virtualized System
Dong-Hyun Song*, Youngjae Lee and Jin-Soo Kim

SungKyunKwan University, South Korea

Motivation

Inefficiencies when the same block is cached by
multiple VMs
• Reduce available cache space
• Increase cache space competition between VMs

• I/O performance degradation

SSD

HDD

VM1

VM2

Hypervisor

Backend
Storage

Our solution

Evaluation

• m: a number of re-access blocks of a VM
• r: a number of re-access shared blocks of a VM
• N: total blocks of a VM
• S: total shared blocks of a VM

 Cache partitioning metric

 Cache replacement algorithm

Approaches
 Cache management architecture
 Cache partitioning metric
 Cache replacement algorithm

(S-CAVE[2])

Cache hit ratio: 31%-63% higher than S-CAVE Trace-driven simulator
• Read intensive workloads
• Write-through

• Co-run: WebSearch2, WebSearch3
• Co-run: src2_1, src2_2

Cache partitioning metric
• rECS(S-CAVE)
• rCrS

Cache replacement algorithm
• S-CAVE(CLOCK with all blocks)
• SHR_CLOCK(CLOCK with shared blocks)
• SHR_REF(Reference counts with shared blocks)
• SHR_TCLOCK(T-CLOCK with shared cache bocks)

𝑟𝐶𝑟𝑆 = 𝑟𝐸𝐶𝑆 ×
𝑟

𝑚
=

𝑚 − 𝑟

𝑁 − 𝑆
 ×

𝑟

𝑚
 𝑟𝐸𝐶𝑆 =

𝑚

𝑁

I/O throughput: by 3.17x higher than S-CAVE

Challenges and Approaches

 How can the hypervisor fairly partition the cache
space among VMs?

 How can the hypervisor efficiently manage the shared
cache blocks?

 Global metadata

(1) The number of re-accessed cache blocks to the total number of private cache blocks
allocated to a VM.

(2) The number of shared cache blocks to the total number of re-accessed cache blocks.

 The rCrS metric avoids choosing a VM with a higher proportion of shared

cache blocks as a victim

(1) (2)

(1) If the CLOCK bit is 1, then it is reset to 0.
(2) If all CLOCK bits are 0, then the T-CLOCK algorithm reclaims the free cache block.
(3) If its own CLOCK bit is 0 but another CLOCK bit is set to 1, this shared cache block

survives until all CLOCK bits becomes 0.

 The private CLOCK hand tests exclusively its CLOCK bit
 The T-CLOCK algorithm tends to prolong the lifetime of shared cache

blocks
 If there are no shared cache blocks, T-CLOCK algorithm is same as CLOCK

Shared blocks ratio: efficiently balanced with rCrS metric

VM tag bits CLOCK bits

0 0 0 0 0 0 0 0

1 1 0 0 1 0 0 0

0 1 0 0 0 1 0 0

empty block, allocatable

VM A(re-accessed), VM B(accessed), shared

A B C D A B C D

VM B(re-accessed), private

0 0 0 1 0 0 0 1 VM D(re-accessed), private

0 1 1 0 0 0 0 0 VM B(accessed), VM C(accessed), shared but evictable

private CLOCK hands

global
CLOCK hand

Entry

VM tag bits

CLOCK bits

global metadata array

LBA CBA

32bits 32bits

hash table

HDD

SSD

LBA (Logical block address)
CBA (cache block address)

VM1 VM2 VMn

Hypervisor

Cache Module

SSD (cache device)

HDD

manager monitor allocator

clock hand

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0 0

global clock hand
(gathering free entries)

0

1

1

1

1

1

1

1

1

0

0

0

0

0

0 0

private clock hand(VM B)

private clock hand(VM A)

global clock hand
(gathering free entries)

0

0
1 …

1

1
0

0 1

1

0
…

private clock hand(VM A)

private clock hand(VM B)

…

…

…

CLOCK S-CAVE

T-CLOCK

[1]

References [1] http://permabit.com/turbocharging-hybrid-storage-with-data-efficiency-deduplication-and-compression-impact/
[2] Tian Luo, Siyuan Ma, Rubao Lee, Xiaodong Zhang, Deng Liu, and Li Zhou. S-CAVE: Effective SSD Caching to Improve Virtual Machine Storage Performance. In PACT’13

