
S. Sambath and E. Zhu (Eds.): Frontiers in Computer Education, AISC 133, pp. 667–674.
springerlink.com © Springer-Verlag Berlin Heidelberg 2012

AndroBench: Benchmarking the Storage Performance
of Android-Based Mobile Devices

Je-Min Kim and Jin-Soo Kim

School of Information and Communication
Sungkyunkwan University (SKKU), Suwon 440-746, South Korea

jmkim@csl.skku.edu, jinsookim@skku.edu

Abstract. The storage performance directly influences usability and overall
user experience in mobile devices. In this paper, we present the design and
implementation of AndroBench, a storage benchmarking tool for Android-
based mobile devices. AndroBench measures the sequential and random I/O
performance and the throughput of various types of SQLite transactions. We
also analyze the AndroBench results we collect from hundreds of devices from
all over the world. Our analysis shows that no single device outperforms
another one in all categories we tested. We also find that the type of eMMC and
the filesystem significantly affect the storage performance.

Keywords: AndroBench, Android, Storage performance, Benchmark.

1 Introduction

The performance of mobile devices is being continuously improved to meet end
user’s growing desire to run more resource-demanding applications. Among others,
the storage performance of a mobile device is one of the most important factors which
directly influences usability and overall user experience of the device [1]. For
example, audio/video playback quality while a number of applications are
downloaded in background, Internet web browsing speed, or the time to complete
database queries all depends on the storage performance.

Obviously, the storage performance is mainly determined by the performance of
the underlying storage media. When it comes to designing mobile devices, hard disk
drives are bigger, easier to fragile, and consume more power than flash-based storage.
For these reasons, almost every mobile device uses NAND flash memory for storing
operating system image, applications, and user data [2]. In particular, many mobile
devices are equipped with a special type of embedded storage solution called eMMC
(Embedded MultiMediaCard). eMMC consists of NAND flash memory, controller,
and MMC interface, all in a small ball grid array (BGA) package [3]. The
optimization in the storage software stack, such as filesystems and I/O schedulers,
also contribute to the storage performance.

This paper presents the design and implementation of AndroBench [4], a storage
benchmarking tool for Android-based mobile devices. AndroBench measures the
performance of sequential and random accesses to a file and the throughput of insert,

668 J.-M. Kim and J.-S. Kim

update, and delete queries to a SQLite database. Currently, AndroBench is available
in the Android market and can be downloaded freely by any Android-based mobile
devices. The measurement results are automatically transmitted to our server. In this
paper, we also present what we have found by analyzing those AndroBench results.

The rest of the paper is organized as follows. In Section 2, we briefly discuss the
related work. Section 3 describes the methodology used in AndroBench in detail.
Section 4 analyzes the benchmark results collected from various Android-based
mobile devices. Section 5 concludes the paper.

2 Related Work

Many benchmarking tools, such as IOzone, IOmeter, and Postmark, have been
developed to measure the storage performance and to analyze the characteristics of
the underlying storage devices. IOzone is a microbenchmark program that supports a
variety of file operations [5]. IOzone measures the I/O performance of accessing a
single file with read, write, re-read, re-write, read backwards, fread, and fwrite
operations. IOmeter is an I/O subsystem measurement and characterization tool for
single and clustered systems, originally developed by Intel [6]. Postmark measures the
performance of creating/reading/appending/deleting small and short-lived files,
modeled after mail server or web-based commercial server workloads [7].

Although it is possible to port these existing storage benchmarks for the Android
platform, there are several restrictions when they are run as a mobile application.
First, as there is no way of getting superuser privilege in the Android-based mobile
devices, some benchmarks which require superuser permission cannot be executed.
For example, IOzone relies on unmounting and remounting the filesystem before each
benchmark run to clear out any caches, which cannot be done in user-level
applications. Second, the time needed to run the benchmark program should not be
long, since the benchmark program will be executed not by system administrators, but
by non-expert smartphone users.

Several benchmark tools specialized for the Android platform are already available
in the Android market. Quadrant is one of the most famous benchmark applications,
which measures the performance of CPU, memory, I/O, and 2D/3D graphics [8].
These results are sent to the server and the server calculates the final benchmark
score. However, Quadrant does not provide any information on what are being
measured and how the final score is calculated from the individual measurement
result. The RL benchmark is a mobile application which focuses on the SQLite
performance [9]. The RL benchmark reports the total elapsed time for processing a
number of SQL queries. However, the specifics of the benchmarking methodology
have not been known either. In comparison to these benchmarks, AndroBench is
intended to be an open, versatile, and more objective benchmark. In AndroBench,
users can measure the storage performance by changing configuration parameters
freely. We also plan to provide the detailed information on our benchmarking
methodology in the AndroBench homepage to ensure objectiveness of AndroBench.

 AndroBench: Benchmarking the Storage Performance 669

3 Methodology

3.1 Microbenchmarks

AndroBench uses four microbenchmarks to measure the sequential and random I/O
performance. To measure the sequential read performance, AndroBench first creates a
file (32MB in size by default) in the target partition (/data by default). Then, the file is
sequentially read with the fixed buffer size (256KB by default). The sequential write
performance is measured similarly except that the file size is reduced to 2MB by
default. This is because otherwise the microbenchmark takes too long due to the
slower write performance. For the random read/write performance, AndroBench
measures IOPS or the number of I/O operations per second. Each read/write operation
is 4KB in size by default and the default file size is 32MB for reads and 2MB for
writes. While measuring the random read/write performance, the offset is chosen
randomly and in a non-overlapping way in the 4KB boundary. AndroBench takes the
average of three runs for each microbenchmark.

One of the important issues in measuring the storage performance is to minimize
the effect of buffer cache. Unfortunately, Java does not provide any library that can
bypass buffer cache. Therefore, our microbenchmarks are implemented in C using the
Java Native Interface (JNI). Buffer cache is bypassed by opening a file with the
O_DIRECT flag. When the filesystem does not support direct I/O (as in YAFFS2 and
Ext2), AndroBench uses a brute-force method; it first creates a temporary file in the
external SD card, whose size is equal to the main memory size. Then, the entire file is
read to fill in the buffer cache, whenever AndroBench needs to clear the cached data
in the buffer cache. Although the Linux kernel provides a very simple way to clear the
buffer cache (using the /proc/sys/vm/drop_caches file), it requires superuser
permission, hence cannot be used in AndroBench.

3.2 SQLite Benchmarks

SQLite is a small embedded database engine [10]. In the Android platform, SQLite is
used as system and user databases storing such information as contacts, SMSes, and
bookmarks of the web browser. Since SQLite stores the entire database as a single file
on the host filesystem, the performance of SQLite is closely related to the storage
performance.

The database schema used in AndroBench’s SQLite benchmarks is modeled after
the one used in the contact database. AndroBench creates a table consisting of 17
columns (12 integer types and 5 text types) in the /data partition, and performs three
types of tests: insert, update, and delete. The number of transactions in each test is set
to 300 by default. SQLite uses the page cache to process transactions. Before each
benchmark, AndroBench calls SQLiteDatabase.releaseMemory() to release the
allocated pages for SQLite in the page cache. The performance of SQLite benchmarks
is measured as TPS or the number of transactions per second.

670 J.-M. Kim and J.-S. Kim

3.3 Changing Parameters and Collecting Measurement Results

AndroBench provides the Settings tab, where users can change various parameters
such as the target partition, the file size and the buffer size used in the
microbenchmarks, and the number of transactions in the SQLite benchmarks. The
target partition can be any of internal (/data or /mnt/sdcard) or external SD card (such
as /mnt/sdcard/external_sd) partition. Since AndroBench supports the external SD
card, it can be also used to compare the performance of various microSD cards with
different speed class ratings.

After successfully completing all the benchmarks, AndroBench transmits the
measurement results into the central server. The information collected includes
the result of each microbenchmark and SQLite benchmark, the model name, and the
associated parameters. This information is used to analyze the storage performance of
Android-based devices and to show the top 10 rankings for each benchmark category.
When processing the submitted results, we use the 3σ rule; i.e., we only take the values
within three standard deviations of the mean to get rid of the data with high variance for
the given device. The use of the 3σ rule is known to provide approximately a 99.73% of
confidence interval [11]. In our analysis in Section 4, we also exclude any device for
which the number of results after applying the 3σ rule is less than 25.

4 Analysis

As of August 30th, 2011, AndroBench accumulates the total 2,628 microbenchmark
results from 236 devices during the past three months. For the SQLite benchmarks,
the total 845 results are collected from 124 devices during a month. In the following
subsections, we analyze the sequential and random I/O performance, the SQLite
performance, and other characteristics of the storage performance in detail.

4.1 Sequential I/O Performance

Table 1 and 2 list the top 5 devices which show the highest sequential read and write
bandwidth, respectively. The international model (GT-I9100) and the domestic

Table 1. Sequential read (MB/s) Table 2. Sequential write (MB/s)

Model
name

Average
performance

Standard
deviation

GT-I9100 43.76 2.9
SHW-M250K 41.89 2.26
SHW-M250S 41.78 2.18

GT-P1000 26.31 1.42
HTC Sensation 25.93 1.99

Model
name

Average
performance

Standard
deviation

GT-P1000 5.74 1.36
GT-I9100 5.28 0.99

HTC Sensation 5.21 0.79
Desire HD 5.04 1

SHW-M250K 4.71 1.21

 AndroBench: Benchmarking the Storage Performance 671

models (SHW-M250K, SHW-M250S) of Samsung Galaxy S2 exhibit the sequential
read bandwidth larger than 40MB/s. Samsung’s Android-based Galaxy Tab
(GT-P1000) shows the highest sequential write bandwidth. We can see that the
sequential read is faster than the sequential write by almost a factor of 8 due to the
characteristics of NAND flash memory.

4.2 Random I/O Performance

Table 3 and 4 present the top 5 devices for the random read and write performance,
respectively. For the random read performance, Samsung’s Galaxy S series such as
SHW-M110S (domestic model) and GT-I9000 (international model) accomplish over
1420 IOPS. On the other hand, HTC Desire is a winner in the random write
performance showing about 200 IOPS. Again, the random write is far slower than the
random read due to the characteristics of NAND flash memory. We also note that the
device with high sequential I/O performance does not necessarily show high random
I/O performance.

Table 3. Random read (4K IOPS) Table 4. Random write (4K IOPS)

Model
name

Average
performance

Standard
deviation

SHW-M110S 1430.14 173.53
GT-I9000 1421.59 101.68
GT-I9100 1366.78 73.39

SHW-M250S 1362.6 60.23
Nexus S 1210.8 51.17

Model
name

Average
performance

Standard
deviation

HTC Desire 196.64 153.77
GT-I9000 109.31 34.83

SHW-M180S 97.39 64.28
SHW-M110S 91.71 45.11

Desire HD 58.9 5.06

4.3 SQLite Performance

Table 5, 6, and 7 compare the top 5 results of the SQLite benchmarks. HTC Desire
shows the best performance in all SQLite benchmarks, recording 54.66 TPS, 55.75
TPS, and 52.07 TPS in the insert, update, and delete benchmark, respectively.

Table 5. Insert performance (TPS) Table 6. Update performance (TPS)

Model
name

Average
performance

Standard
deviation

HTC Desire 54.66 30.78
SHW-M110S 43.22 12.23

GT-I9000 38.5 5.55
Desire HD 27.68 7.64
GT-I9100 18.4 1.22

Model
name

Average
performance

Standard
deviation

HTC Desire 55.75 25.95
SHW-M110S 44.52 12.18

GT-I9100 42.6 3.37
GT-I9000 40.96 6.35

SHW-M250S 40.93 2.49

672 J.-M. Kim and J.-S. Kim

We observe an interesting point in the SQLite performance. The results of the
update benchmark are highly correlated with those of the delete benchmark. We
believe this is because both benchmarks have a similar database access pattern where
records are randomly updated or deleted.

Table 7. Delete performance (TPS)

Model
name

Average
performance

Standard
deviation

HTC Desire 52.07 28.76
SHW-M110S 45.19 12.51

GT-I9100 42.14 3.27
GT-I9000 40.67 5.47

SHW-M250S 39.38 2.04

4.4 Changes in the Storage Performance Over Time

Fig. 1 illustrates changes in the sequential and random I/O performance over time for
four models of Samsung Galaxy series. SHW-M110S and SHW-M130L are domestic
models of Galaxy S, and GT-P1000 is the 7-inch model of Galaxy Tab. GT-I9100 is
the international model of the next-generation Galaxy S2. In Fig. 1, the x-axis is
arranged in chronological order of release date of the corresponding model.

Fig. 1. Sequential and random access performance of Samsung Galaxy series

We observe that the sequential read and write performance have been improved
over time, where the increasing rate of the sequential read is faster than that of the
sequential write. This is because each model adopts a newer version of eMMC, which
provides better sequential bandwidth. However, the random read and write
performance of eMMCs are not significantly improved over time. The latest model of
Samsung Galaxy S2, GT-I9100, shows the random I/O performance worse than its
previous models. From these results, we can see that the random I/O performance of
eMMCs is much harder to be improved.

 AndroBench: Benchmarking the Storage Performance 673

4.5 The Effect of Filesystems

Two different filesystems, YAFFS2 and Ext4, have been used in HTC Desire. Fig. 2
compares the performance effect of using these filesystems on the same device. Ext4
shows the higher sequential I/O performance than YAFFS2. On the contrary,
YAFFS2 is very strong on the random I/O performance. This is because YAFFS2 is
based on LFS (Log-structured File System) [12], where filesystem updates are
sequentially logged in the storage.

Fig. 2. The effect of using different filesystems (Ext4 and YAFFS2) on HTC Desire

The results of sequential and random read performance shown in Fig. 2 require
careful attention. It is known that the log-structured design impairs the read
performance as the data blocks belonging to a file can be spread out over the storage.
Especially, the random read performance has no benefit in YAFFS2 as each 4KB
block will be fetched randomly in both YAFFS2 and Ext4. In spite of this, YAFFS2
shows the significantly higher random read performance compared to Ext4. We
believe this is because the kernel readahead is enabled in YAFFS2 which prefetches
up to 128KB of data to the page cache. Unlike Ext4, we could not make YAFFS2
bypass the page cache as it does not support direct I/O.

4.6 The Effect of eMMC Upgrade on the Same Device

Fig. 3 plots the sequential read and random write performance of the submitted results
for GT-I9000. Interestingly, we can observe that all the measurement results are
clustered into two groups: around 18MB/s and 13MB/s for sequential reads, and
around 150 IOPS and 50 IOPS for random writes. The reason of these results is due to
the internal eMMC upgrade in the same model. The GT-I9000 model is known to use
two kinds of eMMCs, one from Samsung and the other from Sandisk.

Fig. 3. The sequential read and random write performance of GT-I9000

674 J.-M. Kim and J.-S. Kim

5 Conclusion

This paper presents the design and implementation of AndroBench, which measures
the storage performance of Android-based mobile devices. AndroBench measures the
sequential and random I/O performance and the throughput of various types of
SQLite transactions. We also analyze the AndroBench results we collect from
hundreds of devices from all over the world.

Our analysis shows that no single device outperforms another one in all the
benchmark tests we performed. Samsung Galaxy S2 shows the best sequential read
performance. Samsung Galaxy Tab appears to be better than other devices at the
sequential write performance. HTC Desire demonstrates the strong performance in the
random write performance and all of SQLite benchmarks. We also find that the type
of eMMC and the filesystem significantly influence the storage performance.

The actual storage access patterns in the Android-based mobile devices are far
more complex than the benchmark tests we have performed in AndroBench. We plan
to characterize the important storage access patterns in the Android-based mobile
devices and to enhance AndroBench so that it can measure the real-world workloads
in a multithreaded environment.

Acknowledgements. This work was supported by Mid-career Researcher Program
(No. 2010-0026511) and by Next-Generation Information Computing Development
Program (No. 2010-0020730) through the National Research Foundation of Korea
(NRF) funded by the Ministry of Education, Science, and Technology.

References

1. Kusnetzky, D.: Application Performance Requires Better Storage Performance, Document
#20110110, The Kusnetzky Group (2011)

2. Heger, D.A.: Mobile Devices - An Introduction to the Android Operating Environment
Design, Architecture, and Performance Implications., DHTechnologies (2011),
http://dhtusa.com

3. MultiMediaCard (2011), http://en.wikipedia.org/wiki/MultiMediaCard
4. AndroBench (2011), http://www.androbench.com
5. IOzone, http://www.iozone.org/
6. IOmeter, http://www.iometer.org/
7. Katcher, J.: PostMark: A new filesystem benchmark. Tech. Rep. TR3022, Network

Appliance (1997), http://www.netapp.com/tech_library/3022.html
8. Quadrant, http://www.aurorasoftworks.com/products/quadrant
9. RL benchmark, http://redlicense.com/

10. SQLite, http://www.sqlite.org/
11. Sapsford, R., Jupp, V.: Data Collection and Analysis. Sage Publications Ltd.
12. Rosenblum, M., Ousterhout, J.K.: The Design and Implementation of a Log-structured File

System. ACM Trans. on Computer Systems 10(1), 26–52 (1992)

	AndroBench: Benchmarking the Storage Performance
of Android-Based Mobile Devices
	Introduction
	Related Work
	Methodology
	Microbenchmarks
	SQLite Benchmarks
	Changing Parameters and Collecting Measurement Results

	Analysis
	Sequential I/O Performance
	Random I/O Performance
	SQLite Performance
	Changes in the Storage Performance Over Time
	The Effect of Filesystems
	The Effect of eMMC Upgrade on the Same Device

	Conclusion
	References

