

Abstract-- The existence of the JVM layer hinders applications

from notifying the operating system scheduler about their
timeliness requirements and, therefore, the applications
sometimes fail to respond on time. This research proposes a
cross-layer real-time support by which applications notify
operating systems about their timeliness requirements. Our
prototype shows significant improvements in the response times
and throughputs of prioritized applications.

I. INTRODUCTION
The Java virtual machine (JVM) architecture fundamentally

prevents applications from affecting the stability and security
of the whole system by monitoring and strictly controlling the
behaviors of applications that run through it. Smartphones,
which may run uncertified third-party applications, can protect
the system from unstable or malicious third-party applications
by employing the JVM architecture. Therefore, some
smartphone systems including Android utilize the JVM
architecture, and its use is expected to increase in future
smartphone operating systems.

Most smartphone applications are interactive or
multimedia-related such as games, media players and web
browsers. The quality of those applications commonly relate
to the scheduling latency. In order to fulfill the timeliness
requirements, most embedded OS kernels offer real-time
schedulers in one way or another.

Real-time schedulers rely on the information about the
timeliness requirements of applications, which is provided by
the applications to the kernel. However, because the existence
of the JVM layer prohibits applications from directly
accessing the kernel interfaces, applications in JVMs cannot
benefit from the real-time scheduler. Running JVMs through
the real-time scheduler is fundamental to applications` timely
responses [1].

This paper aims to suggest and evaluate the cross-layer real-
time support framework that enables Java-based applications
to utilize the kernel-level real-time scheduler in smartphone
operating systems. The suggested framework is implemented
as a Java library with Java application programming interface
(API) methods that can be called externally to deliver the
timeliness requirements of Java applications to OS kernels.

II. PROPOSED CROSS-LAYER FRAMEWORK
In Java-based smartphone operating systems, a JVM runs as

This work was supported by the IT R&D program of

MKE(Ministry of Knowledge Economy), Korea

a user-level task and an application runs inside the JVM.
Generally, an application runs in a separate virtual machine.
Therefore, the operating system can manage the
responsiveness of the application only by manipulating the
scheduling policy and the priority of its corresponding virtual
machine [2].

The Linux kernel, which is popularly used as the kernel of
many smartphone operating systems, currently employs the
Completely-Fair Scheduler (CFS) [3] as its scheduler. The
CFS has multiple scheduling queues including Normal, Batch,
First-In-First-Out (FIFO) and Round-Robin (RR), and uses a
different scheduling policy for each scheduling queue.

Both FIFO and RR are real-time class scheduling queues.
When runnable tasks are in those queues, they will be
scheduled ahead of other tasks in the Normal or Batch queues.
Furthermore, they will never be preempted by other tasks that
have lower priorities as long as they are runnable.

Android, which is an open source smartphone operating

systems that uses the JVM architecture, categorizes
applications tasks into two groups; foreground tasks and
background tasks. Foreground tasks are placed in the Normal
queue, whereas background tasks are run from the Batch
queue. Currently, Android neither uses the real-time queues
nor provides an interface for applications to set their
scheduling priorities or policies.

We resolve this issue by proposing a cross-layer real-time
support framework. The proposed framework is apparently a

 Cross-Layer Real-Time Support for
JVM-based Smartphone Systems

Young Joo Woo1, Jungwook Cho1, Donghyouk Lim2 and Euiseong Seo1
1Ulsan National Institute Science and Technology

 2Electronics and Telecommunications Research Institute

Fig. 1. The proposed real-time support framework directly passes the
timeliness requirements of applications to the kernel-level scheduler

2012 IEEE International Conference on Consumer Electronics (ICCE)

978-1-4577-0231-0/12/$26.00©2012 IEEE 592

Java library. Applications invoke the framework methods like
other methods offered by the Android system framework. As
shown in Fig. 1, through the Java methods of the suggested
framework, applications can notify the kernel of their desired
scheduling policies and priorities. When applications invoke a
method of the framework, it calls the corresponding system
call through the Java native interface (JNI).

In many cases, applications rely on other applications or
system services [4]. For example, a music player charges the
media server, which is a system service provided by the
Android framework, with decoding music files and playing
them. In these cases, prioritizing only the application does not
guarantee a certain quality of music. Therefore, we prioritize
both applications and their dependent services at the same
time. However, identifying these dependency relationships
among applications and services is difficult, and our scheme
requires applications to explicitly notify the kernel of their
dependent services or applications.

III. EVALUATION
 The proposed scheme is implemented in the Android 2.2

operating system that runs on HTC Nexus One. We execute
applications in the foreground and observe the quality of their
services while running the hackbench benchmark in the
background in order to impose a heavy load on the system.

First, we measure the buffer write delay of the media player
while it plays music. If the media player or its related services
are not properly scheduled on time, the music will play slower
than normal, and it can be interrupted intermittently. Although
delayed buffer writing does not always result in the retarded
play or sound jitters, it has a strong relationship with such
poor user experiences.

As shown in Fig. 2, more frequent and longer buffer write

delays occur as more number of hackbench task groups run
together when applications are not prioritized to the real-time
class. This delay is reduced by approximately 85% under
heavy loads by employing the proposed scheme. Thus
emotional quality and quantitative results improve. Neither
sound jitters nor retarded play occurred until we had run 15
task groups.

One limitation of the proposed approach is that priority
inversion may occur when the scheduler fails to prioritize all
dependent applications or services. To verify the effects of this
limitation, we conducted an experiment by using a web
browser that was set to load a web page periodically. As
shown in Fig. 3, there is no significant difference between the
conventional system and our scheme. The web browser uses
its binder thread to communicate with other services. Because
applications have their own binder threads and all binder
threads are scheduled as a group, prioritizing only a single
binder thread is not possible in the current system.
Consequently, the scheduling delay of the web browser was
not improved because of the scheduling delay of its dependent
binder thread.

IV. CONCLUSION AND FUTURE WORK
We suggested and evaluated a real-time requirement

notification scheme for smartphone operating systems using
JVMs for third-party applications. The suggested scheme
reduced the scheduling latency by 85% under heavy loads in
our evaluation.

However, in spite of this benefit, the present scheme cannot
always provide real-time responsiveness because it does not
automatically detect dependency relationships among
applications and services and some threads cannot be
prioritized to the real-time class. We are conducting further
research to resolve these issues.

REFERENCES
[1] G. Bollella and J. Gosling, "The real-time specification for Java,"

Computer, vol. 33, pp. 47 -54, June 2000.
[2] J. Auerbach, et al., "Design and implementation of a comprehensive

real-time java virtual machine," in Proceedings of the 7th ACM & IEEE
international conference on Embedded software, ed. Salzburg, Austria:
ACM, 2007, pp. 249-258.

[3] C. S. Pabla, "Completely fair scheduler," Linux Journal, vol. 2009,
August 2009.

[4] C.-t. Man, et al., "Study of Priority Inversion in Embedded Linux," in
Proceedings of the First International Conference on Innovative
Computing, Information and Control - Volume 3, ed. Washington, DC,
USA: IEEE Computer Society, 2006, pp. 217-219.

Fig. 3. Average loading delay of the Web browser under varying number of
Hackbench process groups

Fig. 2. Cumulative buffer writing delay of the music payer under varying
number of Hackbench process groups

593

