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Memory is becoming one of the major power consumers in computing systems. Therefore
energy efficient memory management is essential. Modern memory systems employ sleep
states for energy saving. To utilize this feature, existing research activities have concen-
trated on increasing spatial locality to deactivate as many blocks as possible. However
they did not count the unexpected activation of memory blocks due to cache eviction of

deactivated tasks. In this paper we suggest a software based power state management
scheme for memory which exploits temporal locality to relieve the energy loss from the
unexpected activation of memory blocks from cache eviction. The suggested scheme,
SW-NAP makes a memory block remain deactivated during a certain tick which have
no cache miss over the block. The evaluation shows that SW-NAP is 50% better than
PAVM which is an existing software scheme and worse than PMU which is another
approach based on the specialized hardware by 20%. We also suggest task scheduling
policies which increase the effectiveness of SW-NAP and they saved up to 7% additional
energy.
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1. Introduction

Recently the use of mobile computers have rapidly grown. They inevitably use the

battery as their power source. Therefore for extending the operating time the energy

efficiency of those systems are becoming a major design concern.

In general there are two major energy consumers in modern computing equip-

ments. One is a processor and the other is a main memory system1. And the power

consumption by both of them will continuously increase due to the more integration

of the circuits in them and the adoption of high performance technologies such as

increasing clock frequency and bus bandwidth.

There have been lots of research on energy efficient processor management234.

However, relatively few research activities were done on the energy efficiency of

memory subsystem. The memory size is increasing according to the increase of the

application size and its complexity. The power consumption in a memory subsys-

tem is proportional to its size. Therefore the increased memory size causes more

power consumption. As a result the importance of the energy efficient memory

management is growing quickly.

Most modern memory architectures provide several operating modes or power

states for energy management. There have been some researches to utilize these

multiple power states to get energy efficiency. The intuitive approach is to change

the state of the memory blocks which are expected to be unused for a while into

low-power consuming modes. Naturally existing researches concentrated on reduc-

ing active memory blocks at a certain time by modification of memory alloca-

tion algorithm. Representatively PAVM(Power-Aware Virtual Memory)5 places all

the memory space allocated by a task at the minimal memory blocks by using

NUMA(non-unified memory architecture). By this approach memory blocks used

by only the currently executed task are required to be activated.

In this approach, however, the activation of the deactivated memory blocks by

the data eviction from processor caches are ignored. While a task is being executed,

many cache lines are evicted from the processor and the destinations of the evicted

data are spread over the entire memory blocks. As a result due to the unexpected

activation the efforts to turn off the unused memory blocks lose much of their

effectiveness.

Due to the high spatial locality, most of the memory references are absorbed

by processor caches. However, when a task is context-switched to run or starts

manipulation over new data sets massive cache misses may occur in a short period

and therefore many memory access will be made. In this paper we suggest an

optimistic memory management scheme that deactivates all the memory blocks

after every ticks to resolve the unexpected activation of deactivated memory blocks

from cache eviction. This approach is based on the assumption that few memory

blocks will be activated at the next time slice by cache misses.

To increase the effectiveness of the suggested scheme, we also propose two task

scheduling policies that dynamically adjust the context switching point based on the
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actual memory accesses made by the currently running task. The first scheduling

policy advances the context switching from the base period when cache misses

occur after certain threshold. On the contrary the second one prolongs the context

switching for a while after the base period when no memory access occurs during

the execution. By both of these algorithms, memory accesses during the entire

execution time are expected to be reduced because both of them reduces the context

switchings immediately after massive memory read requests.

The suggested schemes were implemented on the Linux kernel. To observe the

memory access pattern and energy consumption we used Bochs6 which is an Open

Source x86 architecture emulator. The evaluation results were got by running the

prototype implementation in Bochs. The results were compared to the existing

research results.

The rest of this paper is organized as follows. Section 2 provides background on

the energy efficient feature implemented in modern memory technologies and also

related work. Section 3 explains the SW-NAP and two scheduling methods. Section

4 describes evaluation results and Finally, Section 5 concludes this research.

2. Background

2.1. Operation modes of DRAM

The basic unit of power control in DDR-RAM(Double Data Rate RAM) is called

rank and in RDRAM(RAM-Bus DRAM) it is named as device. The operating modes

and their properties are similar among different types of DRAM technologies. Figure

1 depicts the power consumption and transition time of power modes which are

provided by RDRAM.

A rank or a device is usually a chunk of memory which consists of thousands

of consecutive physical pages. However, from now on for the generality we will use

block to point the basic power management unit. The size of a block is dependant

on the memory chip and generally a few tens of mega bytes.

Although RDRAM technology provides several different power states, we will

consider only attention and nap mode to prevent the overhead from long transition

time. In the rest of this paper, activation and deactivation means the attention

mode and the nap mode, respectively.

RDRAM is only able to be read or written when it is in attention state. Therefore

if a block is deactivated the memory controller will automatically activate it when an

access over the block occurs. On the contrary the deactivation is done by delivering

state transition command to memory controller.

2.2. Related Work

Existing researches tried to reduce the activated memory blocks while tasks are run-

ning. The intuitive approach of achieving that is raising spatial locality by gathering

data which will be used together and put them into the smallest number of memory

blocks possible.
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Fig. 1. The state transition diagram of RDRAM

Lebeck et al.7 proposed a power aware memory allocation scheme based on the

first touch sequential algorithm. It allocates physical memory in sequential order. By

this, all data used in a task will be placed into a same block or neighboring memory

blocks. In a long term, however, much fragmentation will occur and memory used

by a task will be sprayed over large number of memory blocks. As a result that

phenomena will hinder the spatial locality of allocation. It also assumes dedicated

hardware for detecting idle period of memory blocks and deactivating them.

Delaluz et al.8 proposed scheduler based approach. It keeps a table that tells

which memory blocks are used by a certain task. The state of each memory block

is transitioned according to the information when a context switch occurs. The

memory blocks which are used by the next scheduled task will be activated before

executing and naturally the others will be deactivated. This approach works with-

out additional hardware. However, it could not evade from the degradation of the

effectiveness by the fragmentation problem again.

Huang et al.5 suggested power aware virtual memory management scheme,

PAVM. It is based on the memory allocation algorithm which shares same phi-

losophy with that of Lebeck et al.. It allocates memory used by a task over small

number of memory blocks by gathering them together with utilizing NUMA(Non-

Uniform Memory Access) architecture9. For reducing the fragmentation, a daemon,

kmigrated, is designed to move dispersed data into a memory block. Although it

works well without hardware support, the unwanted activations from the eviction

of processor cache were not considered. If the evicted line is not for the currently

executing task, somewhere of the deactivated memory blocks should be activated

and it will remain activated until the next context switching.

Lee et al.10 asserted that also the memory used for kernel buffer should be

maintained in the similar manner to PAVM. To achieve that they match each

memory block used for kernel buffer to a task which uses the block most frequently

and try to pack the kernel buffer block into the memory blocks allocated to the
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task. The evaluation of PABC(Power-Aware Buffer Cache) which is their prototype

implementation showed that the significant portion of total memory blocks was

used for kernel buffer and with their approach the energy consumption in those

blocks was much reduced. However, they did not mentioned about the unexpected

activation from cache evictions in their paper either.

Huang et al.11 also proposed new hardware-software cooperative approach over

PAVM. PMU(Power Management Unit), the dedicated hardware, records the his-

tory of the memory references over each memory block. Using that information

PMU controls the power state of the memory blocks allocated to a task for each

task. If a memory block has not been used for a certain threshold length, then PMU

will bring it to sleep state.

In addition to PAVM which improves energy efficiency from unused memory

blocks, PMU saves more by identifying unused cycles for each memory block. Nat-

urally PMU approach shows better energy efficiency than the other software-based

approach. However, in real world adding a controlling device such as PMU is much

harder than adding a software layer. Also the cost for developing as well as manu-

facturing is a big obstacle to employ the hardware based approaches.

3. Power-Aware Memory Management Scheme

In this section we suggest a software based power-aware memory management

scheme,SW-NAP(Software based Napping), which exploits temporal locality. And

two task scheduling policies which raise the effectiveness of SW-NAP are also in-

troduced.

3.1. Memory State Management Policy

The basic scheduling unit of modern operating systems is a tick also known as a

quantum or a time slice. In general the length of a tick is from 1 ms. to 10 ms..

When a task is scheduled to run then it will be executed during a few continuously

allocated ticks. This is for increasing the hit-rate of TLB(Translation Lookaside

Buffer) and processor caches. Therefore generally a task generates small number of

cache misses during the execution except the first tick of the allocated ticks for the

task.

The activation of a memory block requires about 230 ns.. The power consump-

tion of the activated state is 30 times more than that of the deactivated state.

Considering the energy consumption for the state transition, the break-even time

of deactivation is 250 ns.7. In other words if an idle period of a memory block is

expected to be longer than 250 ns. it will be beneficial to deactivate the memory

block as soon as possible.

Based on this observation we suggest SW-NAP. It deactivates all of the memory

blocks after every ticks excluding the first tick a task was given at scheduling

time. SW-NAP utilizes the characteristics that the working set will be activated

automatically by themselves. This is different from the traditional approaches that
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Context swtiching 
to task A

Context swtiching 
to other task

Time

Making all blocks belonged to task A sleep

Tick Tick TickTickTick Tick Tick TickTickTick

Fig. 2. Timeline of SW-NAP

try to find or limit working sets exactly. And SW-NAP exploits temporal locality

to extend the deactivated time of memory blocks while others have tried to increase

the number of deactivated blocks at a certain time by raising spatial locality. SW-

NAP is not exclusive to the spatial locality based approaches. Therefore it is able

to be easily combined with those approaches and even more effective with those

combinations.

The overhead of SW-NAP are caused by the deactivation of memory blocks

and the activation from the cache misses over deactivated memory blocks. With

the assumption that there are 32 memory blocks in the target system and the

deactivating operation is done for each block in serial order, the deactivation of

whole blocks requires about 700 ns.. It is 0.07% of a tick and this is the number

for the worst case, when all memory blocks are active. If many blocks would stay

deactivated in most of the time, the deactivating time is negligible.

The execution delay from the activation are dependant on the cases. In the

worst case when the all 32 blocks are activated in a tick, the activating operations

take about 7.5 µsec. This is only 0.7% of a tick. In most cases the size of a block

is big enough that the size of working sets are within a few blocks. Therefore few

activations are expected to occur in a tick.

3.2. Power Aware Task Scheduling Policy

SW-NAP is based on the assumption that the memory access patterns have high

temporal locality. However, if a task is switched out shortly after massive cache

misses then the accessed memory should be reloaded at the next scheduling of the

task because many of the loaded cache lines may be evicted during the execution

of the other tasks before the next time slice of the task. In that case the tempo-

ral locality will not be fully utilized by SW-NAP. In this section we suggest two

scheduling policies to prevent this case and as a result raise the effectiveness of

SW-NAP.
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Context swtiching 
to task A
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context switching point

Time

Ticks with 
no memory access

Ticks with 
cold memory accesses

Ticks with 
sudden memory accesses

Fig. 3. The execution flow of ESS

3.2.1. ESS : Early Context Switching Scheduling

The memory working set of a task changes as it runs. If a task starts to work on

a new working set after a few ticks of working on the former working set, massive

cache misses may occur in the next few contiguous ticks. Considering this tendency,

ESS switches the current task with the next one immediately if cache misses start

to occur near task switching time.

The cache miss or even the number of cache misses occurred can be measured

with processor performance measurement counters. They were easily found in most

modern processors including Intel R© PentiumTM and CoreTM architectures and

IBM R© PowerTM architectures.

ESS is illustrated in Figure 3. Timer interrupt handler counts the number of

cache miss occurrences in the last tick. If there is no cache miss, the currently

running task is in the execution phase of high temporal locality. It will be executed

until it uses up its allocated ticks. On the contrary if there were cache misses in a

certain tick before the expiration of the execution, a context switch will be made

after the tick. A predefined threshold period in which the cache misses do not

affect the scheduling decision should be defined to prevent too early switching. For

example if the threshold period is 1/2 of the total given ticks, then if there is cache

miss in the front half of the given time, it will not be affected by ESS. Naturally

ESS will be applied in the last half of the given time.

ESS may generate overly frequent task switchings especially with the tasks which

continually changes its working set. To resolve this ESS should not applied to the

tasks that made cache misses in every tick within the threshold period.

3.2.2. LSS : Lazy Context Switching Scheduling

The second approach, LSS, is the contrast to ESS. When the last ticks have no

cache miss it postpones the context switching and gives more ticks named bonus

ticks to the current task after it uses up its given time.

Cache lines which were loaded for a task right before a context switching may

be evicted by the next task. In most cases they will be missed again and reloaded
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Context swtiching 
to task A

Deferring
context switching point

Time
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Fig. 4. The execution flow of LSS

in the next scheduled time for that task. By LSS the newly loaded cache lines will

stay longer in processor caches and therefore the throughput as well as the cache

hit rate will be improved also.

LSS is illustrated in Figure 4. The bonus tick checking routine is executed in the

interrupt handler during the bonus counting interval which is generally the last half

of given ticks. Naturally the length of the bonus counting interval can be adjusted

depending on the characteristics of the tasks. It checks the existence of cache miss

during a tick. If there is no cache miss during a certain tick, the task earns one

bonus tick. The bonus ticks are used after the task uses up its ticks initially given

at the scheduling point. While executing with bonus ticks if the task produces a

cache miss then all the remaining bonus ticks will be forfeited and immediately

switched out.

In addition to the energy efficiency the cache hit ratio during entire run time

will be increased with LSS. However the tasks with few memory accesses or stable

working set will get prioritized and this causes unfairness problem. Reducing the

number of the initial ticks when the next schedule for the tasks that had benefit

from LSS can compensate this unfairness.

4. Performance evaluation

4.1. Evaluation Environment

The suggested scheme was implemented on the Linux kernel. However, it was hard

to measure the exact memory usage profiles such as ”what memory blocks were

activated when” in real systems. Therefore we modified Bochs6 x86 simulator.

Because the original Bochs has no cache emulation system, cache layer which

emulates 8-way set associative cache structure was added. And we also implemented

memory controller structure and memory usage profilers. With these additions we

can extract the memory usage profiles and measure the power consumption exactly

during the actual execution.

We employed PAVM as the memory allocation and management algorithm.

Based on it our suggested scheme will manage the operation mode of the memory

system during the execution.
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Table 1. Experimental Environment

Simulator Modified Bochs-2.1

Processor Clock 1GHz

Architecture Model P6 Family

Cache Model
2MB, 64Byte Line

8-Way Set Associative

Main Memory 256MB

Number of Memory Blocks 32

OS Distribution Fedora Core 3

Kernel version linux-2.4.20

For evaluation, three applications chosen from SPECCPU200012 were used. Ac-

tual workloads for the evaluation were running these programs concurrently to

simulate multi-tasking environment. The input data set for each programs were

unmodified from original benchmark suite.

The evaluation results were compared with PAVM and PMU. For acquiring

PAVM kernel, PAVM patch which was released by the authors of PAVM was used.

In contrast with PAVM, PMU requires the specialized hardware support. We also

implemented PMU hardware support in Bochs.

4.2. Evaluation Results

The energy consumption and the energy delay product as known as E × D were

measured for the execution of the evaluative tasks.

Figure 5 is the normalized energy consumption. As we can see in Figure 5,

SW-NAP reduced about 62% energy consumption compared to PAVM while PMU

reduced about 65%. PAVM showed the bad result because as aforementioned earlier

the intention of PAVM was hindered by the cache evictions. The cache evictions

were sometimes scattered over whole memory blocks. But they densely happened

within short periods.

As the results showed, the concept that exploits the temporal locality of memory

accesses was certainly effective. However, by the aid of dedicated hardware, PMU

did it slightly better than SW-NAP with shorter management periods and low

overhead to perform operating mode transitions. Generally the differences were

under 10% of the PAVM energy consumptions.

The evaluation results for the suggested scheduling algorithms are represented

in Figure 6. The decision threshold interval for ESS and the bonus counting interval

for LSS was chosen as half of the initially given ticks for a scheduling. Both ESS

and LSS showed better energy efficiency than SW-NAP in all cases. When twolf

was executed LSS showed less energy consumption than ESS. twolf requires only

4 Mbytes of memory during the entire execution time13. Therefore it has high

spatial locality. As a result even in case that there are cache misses at a certain

tick for twolf, the next tick will tend to have no cache miss at all. In this situation

sometimes expedited task switchings by ESS increased the number of cache misses
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Fig. 5. Energy consumption of SW-NAP Normalized to PAVM

rather reduced them. On the contrary LSS was able to utilize the benefit of high

spatial locality with extended task switching period. To summarize LSS showed

stable energy saving in all cases and ESS worked better only in case that all the

tasks have sparse and dynamically changing memory usage patterns.

As well as the energy consumption we measured the total execution time for

identifying the overhead of the suggested scheduling policies. As shown in Figure



March 18, 2008 2:7 WSPC/INSTRUCTION FILE euiseong

Exploiting Temporal Locality for Energy Efficient Memory Management 11

Fig. 6. Energy Consumption in Use of ESS and LSS

Fig. 7. Total Execution cycles

7 the difference among the scheduling policies were less than 0.1%. By this we can

tell that both ESS and LSS increase the energy efficiency of SW-NAP without the

prolongation of task execution time.

5. Conclusion

This work pointed out the weakness of the existing approaches on power-aware

memory management which tried to raise spatial locality of memory allocation.

Existing algorithms are expected not to work well on actual systems due to the
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unexpected activation of memory blocks from cache eviction.

We suggested a simple and novel power-aware memory management scheme

exploiting temporal locality. SW-NAP deactivates all the memory blocks after every

tick. We also suggested two scheduling policies to increase the effectiveness of SW-

NAP. ESS expedites context switching when the currently running task produces

cache misses in the some predefined time interval which are usually the last half

of its given ticks. On the contrary LSS extends the execution when the current

running task generates no cache miss.

The suggested schemes were implemented on Linux kernel. Evaluation were

done for three benchmark programs from SPECCPU 2000 benchmark suite. The

energy consumption and the execution time was measured with the modified Bochs

emulator. The evaluation results showed that SW-NAP performs better than PAVM

by saving about half energy of PAVM. Comparing to PMU which is a hardware

approach, SW-NAP consumes about 20% more energy in general. Moreover with

ESS and LSS which are the scheduling policies considering memory access patterns,

SW-NAP was improved by up to 7% of energy saving compared to SW-NAP without

them. Considering that PMU requires dedicated hardware which means increased

cost, we conclude that SW-NAP is a satisfiable candidate for the energy efficient

memory management.

This work showed the potential of the software based approach exploiting tem-

poral locality for power-aware memory management. The short transition times

among the different power modes which were provided by modern memory tech-

nologies aid this approach. However, the suggested scheme may affect the fair shar-

ing of processor resource among tasks. And the algorithm is rather intuitive and

not intelligent that means a margin to be optimized. If an operating system knows

the memory reference patterns precisely by monitoring profiler registers which are

provided by many modern processors it can choose the optimal policy for the situ-

ation among ESS, LSS or some other customized algorithms to get greater energy

efficiency with less performance loss.
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