
TwoB: A Two-Tier Web Browser Architecture
Optimized for Mobile Network

Junguk Cho
College of Information and

Communication Engineering,
Sungkyunkwan University,

Rep. of Korea 440-746
jmanbal@skku.edu

Jinkyu Jeong
Computer Science Dept.,

Korea Advanced Institute of
Science and Technology,
Rep. of Korea 305-701

jinkyu@calab.kaist.ac.kr

Euiseong Seo
College of Information and

Communication Engineering,
Sungkyunkwan University,

Rep. of Korea 440-746
euiseong@skku.edu

ABSTRACT
The connection establishment phase including DNS lookups
and TCP handshakes takes significantly long time during
web browsing through mobile network. In this paper, we pro-
pose a novel web browser architecture that aims at improv-
ing mobile web browsing performance. Our approach dele-
gates the connection establishment phase and HTTP header
field delivery to a dedicated proxy server located at the joint
point between WAN and mobile network to reduce both the
number and size of packets on mobile network. Our evalua-
tion showed that the proposed scheme reduces the number
of mobile network packets by up to 52% and, consequently,
shortens the average page loading time by up to 37%.

Categories and Subject Descriptors
H.4.3 [Communications Applications]:
Information browser

General Terms
Design, Experimentation

Keywords
web browsers, smart phones, mobile network, proxy, HTTP

1. INTRODUCTION
More and more people are web browsing on mobile de-

vices such as smart phones and tablets instead of PCs or
laptops. However, the web browsing through mobile network
is usually unsatisfactory due to its slow response. Lots of re-
searchers have claimed that the long round-trip time (RTT)
of mobile network is the most significant inhibitor of fast
mobile web browsing [2, 6].
A web page usually has many embedded objects that re-

side at other web sites. Therefore, loading a web page in-
volves multiple domain name system (DNS) lookup oper-
ations and transport control protocol (TCP) handshakes,

which occur during the connection establishment phase be-
tween the mobile web browser and the web servers. The size
of packets for DNS lookups and TCP handshakes is gener-
ally small. However, transferring them over mobile network
requires significantly long time due to its long RTT. As a re-
sult, such frequent small-packet communications slow down
the overall web page loading time on mobile network.

In order to improve the mobile web browsing performance
over mobile network, we proposed a two-tier web browser ar-
chitecture that consists of a mobile web browser and a proxy
server. The proxy server is located at the joint between wide-
area-network(WAN) and mobile network, and the mobile
web browser stays connected to the proxy server with the
persistent connection defined in the HTTP 1.1 standard.
The proxy server conducts DNS lookups and TCP hand-
shakes on behalf of the mobile web browser. In addition to
this, the proxy server adds HTTP header fields to HTTP re-
quests for the web browser so that the HTTP header fields
are stripped off from the packets on mobile network. With
these approaches, the proposed architecture is expected to
reduce both the number and size of mobile network packets.

2. MOTIVATION AND BACKGROUND
Mobile web browsers generally fall into two categories: the

thin-client and the native browser architecture [1, 5].
A thin-client web browser consists of a light-weight web

browser and a remote proxy server. A request for a web page
is forwarded to the proxy server by the browser, and then
the proxy fetches the web objects for the web page, renders
the web page image, and sends it back to the web browser.
The browser is only responsible for forwarding user inputs to
the proxy and for displaying the rendered web page images
delivered from the proxy.

This architecture is appropriate for the limited computing
power of mobile devices [3, 5, 7]. In addition, it reduces the
web page loading delay by eliminating DNS lookups, TCP
handshakings and HTTP header fields from mobile network
communication between the proxy and the browser.

However, the thin-client model has three critical draw-
backs. First, some web objects may not be properly rendered
and dynamic web pages may not function correctly because
what the browser shows to users are simply rendered images
or preprocessed web pages [1].

Second, although it may reduce the number of small pack-
ets, the thin-client architecture sometimes increases the amount
of data transferred over mobile network [3, 5, 7] due to lack
of local cache for storing web objects and the size of the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MoMM2012, 3-5 December, 2012, Bali, Indonesia.
Copyright 2012 ACM 978-1-4503-1307-0/12/12 ...$15.00.

267



Table 1: Average number of packets/size of data (in
KBytes) for loading mobile web pages.

Web Whole Connection HTTP Reused
sites page establishment Requests conn.

google 528.7/372.8 27.0/3.7 15.4/10.0 7.1
weather 80.0/30.2 15.5/2.0 9.0/5.9 5.8
espn 908.7/556.8 103.4/11.4 40.5/25.7 16.2

cnnmobile 433.7/209.0 68.1/6.3 27.2/18.2 8.2
facebook 157.8/76.2 25.8/2.8 8.8/5.1 2.9
wikipedia 216.0/95.7 33.0/2.9 13.7/7.8 4.7

rendered web page images.
Finally, this approach increases burdens of the proxy server

by heavy computation loads. If the proxy server is over-
loaded it could adversely affect the web browsing perfor-
mance [1].
As the hardware performance of mobile devices improves,

lots of commodity mobile devices employ native browsers.
Native browsers handle every step to process a web page

request by itself so that they can provide interactive and
dynamic web pages like most web browsers currently being
used in PCs. Moreover, their human interface like zooming
in/out feels more natural and their page loading time feels
faster than the thin-client counterparts because they draw
intermediate rendering during page loading and update it
continually.
However, the native browsers process the connection es-

tablishment phases over mobile network, where the RTT
is critically slow, and this severely harms the page loading
time.
In order to reveal the proportion of the packets for the

connection establishment phases to the total network trans-
mission for web page loading, we analyzed the number of
packets and size of data transferred to load each of the six
most popular mobile web sites which are announced by the
Nielsen company in 2009.
Table 1 shows average number of packets and size of data

for opening web sites.
Although the size of packet for the connection establish-

ment operations is negligible, the connection establishment
phase significantly affects the overall web page loading time
since content download begins after completing the connec-
tion establishment phase and the RTT of mobile network is
severely long.
To improve web page loading time, the HTTP 1.1 stan-

dard introduced the HTTP persistent connection and HTTP
pipelining.
The HTTP persistent connection is a technique that keeps

a TCP connection alive after finishing an HTTP transaction,
and reuses the open connection for the forthcoming HTTP
transactions instead of opening new connections.
A browser stores an open persistent connection in the con-

nection cache after finishing an HTTP transaction. If a con-
nection to a web server is necessary for a new HTTP re-
quest, and there is a cached connection to the web server in
the connection cache, the browser reuses the cached connec-
tion to avoid the connection establishment overhead.
However, the number of the reused connections is smaller

than the half of the total number of HTTP requests as shown
in Table 1. This is because a web page usually has multi-
ple embedded objects that are served by different web sites,

imgA imgB imgCHTTP0 Host A

A packet with
MTU size of 1500 bytes

HTTP request to Host B 

HTTP request to Host A 

Host AHTTP1 imgD imgE

(a) Small MTU size

imgA imgB imgCHTTP0 Host A

Host BHTTP1 imgX imgY

(b) Embedded objects at different hosts

Figure 1: Disturbance factors of HTTP pipelining

and new connections are necessary to access such embedded
objects. In addition, the limited capacity of the connection
cache enforces the connection cache to discard cached con-
nections that may be reused in the near future.

The HTTP pipelining, which enables web browsers to is-
sue HTTP requests without receiving the previous responses,
improves the web page loading delay dramatically. With
HTTP pipelining, a web browser can pack multiple HTTP
requests in a single TCP packet. Accordingly, the number of
round trips for HTTP requests is decreased. The effective-
ness of the pipelining, however, is disturbed by two factors
as shown in Figure 1. First, due to the MTU size, more than
a single packet could be necessary. Second, when embed-
ded objects are served from multiple web sites, transmitting
multiple packets is unavoidable.

Considering the slow RTT of mobile network, the packet
reduction from both persistent connection and request pipelin-
ing is crucial for the web page loading time. Our approach
aims at maximizing the benefits from these two techniques.

3. OUR APPROACH
We propose a Two-Tier Web Browser architecture named

TwoB that consists of a mobile web browser and its corre-
sponding proxy server, which resides at the joint point be-
tween WAN and mobile network.

Like a native browser, the browsers in our model process
all steps to load a web page except the connection establish-
ment phase, which is handled by the proxy.

The IP address of the proxy server is delivered by mobile
network provider’s DHCP server when a mobile device con-
nects to mobile network, and then the mobile OS configures
the proxy server for its web browser automatically. Thus,
users do not need to be aware of our scheme.

Figure 2 shows how the communication occurs between
the mobile browser and the proxy server, and also between
the proxy server and a DNS or Web server.

When a browser loads a web page first, the connection be-
tween the browser and the proxy is established. The browser
always keeps the initial connection open. It sends and re-
ceives all future packets for HTTP transactions through this
initial connection. In order to benefit from parallel process-
ing, multiple connections between the proxy and browser
can be open and managed.

All HTTP requests generated by the browser are sent to
the proxy server through the open connections. Then, the
proxy server retrieves the URL from the forwarded HTTP

268



1. Proxy initialization

2. HTTP transaction

TIME

HTTP response
HTTP/1.1 200 OK

DNS query
DNS response

SYN/ACK
SYN

ACK

Modified 

HTTP response

SYN/ACK
SYN

ACK

HTTP response

HTTP request

HTTP request

ACK

ACK

ACK

Proxy DNS server

Web server

                    Mobile 
Network                     WAN

Mobile browser

Browser config
ACK

Figure 2: Processing HTTP requests in TwoB archi-
tecture

requests and performs required transactions with the DNS
server and the corresponding web servers. After retrieving
the requested web pages, the proxy server modifies the HTTP
headers to make them support the HTTP persistent connec-
tion and returns them to the browser.
For this persistent connection, the proxy server must man-

age the HTTP persistent connection even when web servers
do not support the persistent connection. Since the persis-
tent connection is adapted from HTTP version 1.1, many
web browsers intentionally disconnect the TCP connection
when the version field of an HTTP response is 1.0, and the
keep-alive in the connection field of the HTTP header is un-
set. If the proxy server relays such HTTP responses to the
mobile browser, the browser will disconnect the connection
albeit the connection is actually established not with the
web server, but the proxy. To cope with this issue, the proxy
server replaces the version field of each HTTP response with
1.1 and eliminates connection header field regardless of the
HTTP version. As a result, the browser naturally keeps the
connection open for subsequent HTTP transactions.
Due to connection management cost, some of the existing

browsers reap idle TCP connections after configured timeout
interval. In order to avoid this, the timeout interval of the
TwoB browser is set to be indefinitely long.
Most existing browsers limit the number of open TCP con-

nections below a predefined number. When the connection
cache is full, one connection is closed by a cache replacement
policy to accommodate a new connection to a new web site.
In our scheme, such case never occurs because the proxy
server is the only destination that the browser communi-
cates with.
In our browser architecture, we have an opportunity to

increase the effect of HTTP pipelining by alleviating the
two disturbing cases described in Section 2.
From the traced packets in Table 1, we found that a sub-

stantial part of HTTP requests are invariant static header
fields [4]. Those static header fields are Accept-Language,
Accept-Charset, User-Agent, and so on, which specify the
mobile browser information.
In the TwoB architecture, such static header information

of the browser is delivered to the proxy server when the
first connection is established. The proxy uses the deliv-

Table 2: Number of HTTP requests and necessary
packets for accessing replicated mobile web pages.

Web Number # of packets
sites of HTTP

Total
DNS TCP TCP

requests lookups handshakes close

google 11.0 454.3 10.0 18.0 26.0
weather 6.0 65.3 6.0 12.0 16.0

cnnmobile 23.0 275.2 14.0 35.5 47.3
facebook 6.0 124.0 6.0 9.0 13.0
wikipedia 12.0 125.2 10.7 18.0 24.0

ered HTTP header fields when it sends HTTP requests to a
web server on behalf of the browser. Accordingly, such static
header fields are unnecessary in the HTTP requests sent to
the proxy server. Because of this, the size of HTTP requests
on mobile network is reduced. The smaller the size of HTTP
requests is, the more HTTP requests are packed in a single
TCP packet. Therefore, the effectiveness of HTTP pipelin-
ing limited by the size of the MTU size improves. Even when
the number of TCP packets holding HTTP requests is not
decreased, the size of data on mobile network is still reduced.

The ineffectiveness in pipelining due to embedded objects
located in multiple hosts is naturally resolved since the only
destination of all HTTP requests is the proxy server in our
architecture.

4. EVALUATION
We implemented the prototype web browser based on the

Android OS web browser, and the proxy server with Twisted,
an event-driven web server framework.

We set up the evaluation environment to emulate web
browsing over mobile network.

First, we configured the Wi-Fi network with 200 ms in-
jected delay in RTT and 150KBps/14KBps downlink/uplink
bandwidth between the proxy and the smartphone, respec-
tively, to imitate the characteristics of typical 3G network
services.

Second, we replicated the contents of the web sites and
used them in our evaluation to eliminate the response time
variations found in real web sites. The detailed information
about the replicated web pages is summarized in Table 2.

Lastly, we ran an Apache web server to provide virtual
hosts for the replicated web sites and hosted our own DNS
server so that every web request from the smartphone goes
to our web server with replicated web pages.

We measured the number of packets, the size of trans-
ferred data and the overall loading time to access a web site
at the access point using tcpdump. The web loading time is
defined as the elapsed time from when a user clicks the load
button to when the progress bar of the browser hits 100%.

At every iteration, the local cache of the browser was
flushed and this leaded to flushing connection caches to-
gether. All web sites were sequentially visited with a time in-
terval of 30 seconds. The results shown in Figure 3 are aver-
age values obtained from fifty iterations. Native denotes the
results from the unmodified native browser for comparison
and TwoB denotes the results from the proposed scheme.

Figure 3(a) shows the number of packets to load each web
site. Except google web site, the packets for the connection
establishment phase were eliminated. Twelve TCP hand-
shaking packets were transferred over the mobile network to

269



 0

 100

 200

 300

 400

 500

 600

google weather cnn facebook wiki

T
he

 n
um

be
r 

of
 p

ac
ke

ts

Websites

Native
TwoB

HTTP request/response
DNS lookup

TCP handshake
TCP close

(a) Number of packets

 0

 1

 2

 3

 4

 5

 6

 7

google weather cnn facebook wiki

W
eb

pa
ge

 lo
ad

in
g 

tim
e 

(s
ec

)

Websites

Native
TwoB

(b) Web loading time

 0

 5

 10

 15

 20

 25

 30

google weather cnn facebook wiki

T
he

 s
iz

e 
of

 D
at

a 
tr

an
sf

er
re

d 
(K

B
)

Websites

Native
TwoB

HTTP request
DNS lookup

TCP handshake
TCP close

(c) Data size except web contents

Figure 3: Comparing results of a conventional web browser and TwoB

access google web site, which was the first site to visit, be-
cause the browser manages four simultaneous connections,
and each connection requires three handshaking packets. Af-
ter all persistent connections were established between the
browser and the proxy, no more TCP handshakes occurred.
As a result, the number of packets passing through the mo-
bile network was decreased by 12% to 52% for each site. The
reduction rate depended on both the number of embedded
objects in web pages and the size of the embedded objects.
Figure 3(b) shows the time to load the web sites. Our

scheme reduced the web browsing latency by 17% to 37%
in comparison to the native browser. This improvement was
majorly due to the elimination of the connection establish-
ment phase. However, the time gaps between our scheme
and the native browser were smaller than the expected val-
ues, which are the number of packets for connection estab-
lishment phase multiplied by the injected RTT. For example,
loading the weather web site generates three and four of DNS
lookups and TCP handshakes, respectively. Accordingly, the
expected time reduction is 200 ms * 7 = 1.4 seconds. The
process of the round-trip packets, however, is overlapped by
the four concurrent persistent connections. As a result, the
measured improvement was smaller than the expected.
Finally, we present the size of HTTP requests since our

scheme minimizes the size of HTTP requests passing through
the mobile network. Figure 3(c) illustrates the data size
of packets that include TCP handshake, TCP close, DNS
lookup and HTTP request. The data size for HTTP requests
was significantly reduced by 35% to 69% compared to the
native case. In addition, the overall traffic except web con-
tents was reduced by 53% to 79%.
Since our scheme removes static header fields in each HTTP

request at the browser side and appends them at the proxy
server side, the data traffic passing through the mobile net-
work is reduced and the effectiveness of HTTP pipelining is
increased. In case of the cnnmobile web site, the number of
packets including HTTP requests was reduced from 23 to 18
due to the increased effectiveness of HTTP pipelining.
In case of the weather web site, our scheme did not reduce

the number of packets for HTTP requests. The reason is
that this web site has a few HTTP requests (6 requests in
the replicated web sites). In addition, the web browser used
four threads to fetch web objects concurrently. Accordingly,
when an embedded object was found at the parsing phase,
the HTTP request for the object was promptly submitted
to the network stack in the OS without any queueing delay.

Accordingly, the chance that HTTP pipelining occurs was
low.

5. CONCLUSION
Web browsing on mobile network is sluggish in comparison

to that on other wired or Wi-Fi networks because the RTT
of mobile network is relatively long on mobile network and
transferring many small packets for DNS lookups and TCP
handshakes is required for a web page loading instance.

We proposed a two-tier web browser architecture that con-
sists of a mobile web browser and a proxy server. The proxy
server conducts DNS lookups and TCP handshakes as a rep-
resentative of the mobile web browser. In addition to this,
the proxy server adds HTTP header fields to HTTP requests
on behalf of the web browser so that the HTTP header fields
data is stripped off from the packets on mobile network.

Our evaluation showed that the proposed architecture greatly
reduces both the number and size of mobile network pack-
ets, and in turn, improves the page loading delay along with
the mobile network load.

6. REFERENCES
[1] E. Hernandez. War of the mobile browsers. IEEE

Pervasive computing, pages 82–85, 2009.
[2] J. Huang, Q. Xu, B. Tiwana, Z. Mao, M. Zhang, and

P. Bahl. Anatomizing application performance
differences on smartphones. In Proc. of MobiSys’10,
pages 165–178, 2010.

[3] J. Kim, R. Baratto, and J. Nieh. pTHINC: a thin-client
architecture for mobile wireless web. In Proc. of
WWW’06, pages 143–152, 2006.

[4] Z. Liu, Y. Saifullah, M. Greis, and S. Sreemanthula.
HTTP compression techniques. In Proc. of WCNC’05,
volume 4, pages 2495–2500, 2005.

[5] H. Shen, Z. Pan, H. Sun, Y. Lu, and S. Li. A
proxy-based mobile web browser. In Proc. of MM’10,
pages 763–766, 2010.

[6] Z. Wang, F. Lin, L. Zhong, and M. Chishtie. Why are
web browsers slow on smartphones? In Proc. of
HotMobile’11, pages 91–96, 2011.

[7] B. Zhao, B. Tak, and G. Cao. Reducing the delay and
power consumption of web browsing on smartphones in
3G networks. In Proc. of ICDCS’11, pages 413–422,
2011.

270




