
38

A Reconfigurable FTL (Flash Translation
Layer) Architecture for NAND Flash-Based
Applications

CHANIK PARK, WONMOON CHEON, JEONGUK KANG,
KANGHO ROH, and WONHEE CHO

Samsung Electronics

and

JIN-SOO KIM

Korea Advanced Institute of Science and Technology

In this article, a novel FTL (flash translation layer) architecture is proposed for NAND flash-

based applications such as MP3 players, DSCs (digital still cameras) and SSDs (solid-state drives).

Although the basic function of an FTL is to translate a logical sector address to a physical sector

address in flash memory, efficient algorithms of an FTL have a significant impact on performance as

well as the lifetime. After the dominant parameters that affect the performance and endurance are

categorized, the design space of the FTL architecture is explored based on a diverse workload anal-

ysis. With the proposed FTL architectural framework, it is possible to decide which configuration of

FTL mapping parameters yields the best performance, depending on the differing characteristics

of various NAND flash-based applications.

Categories and Subject Descriptors: B.3.2 [Design Styles]: Mass Storage; B.4.2 [Input/Output
Devices]: Channels and Controllers; D.4.2 [Storage Management]: Secondary Storage

General Terms: Design, Performance, Algorithm

Additional Key Words and Phrases: Flash memory, FTL, reconfigurable architecture, performance

analysis

ACM Reference Format:
Park, C., Cheon, W., Kang, J., Roh, K., Cho, W., and Kim, J. 2008. A reconfigurable FTL (flash trans-

lation layer) architecture for NAND flash-based applications. ACM Trans. Embedd. Comput. Syst.

7, 4, Article 38 (July 2008), 23 pages. DOI = 10.1145/1376804.1376806 http://doi.acm.org/10.1145/

1376804.1376806

Authors’ addresses: C. Park, W. Cheon, J. Kang, K. Roh, W. Cho, Samsung Electronics, Hwasung-

City, Korea; email: {ci.park, wm.cheon, ju.kang, kangho.roh, whpp.cho}@samsung.com; J.-S. Kim,

Division of Computer Science, Korean Advanced Institute of Science and Technology, Daejeon,

Korea; email: jinsoo@cs.kaist.ac.kr.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn

Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2008 ACM 1539-9087/2008/07-ART38 $5.00 DOI 10.1145/1376804.1376806 http://doi.acm.org/

10.1145/1376804.1376806

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, Article 38, Publication date: July 2008.

38:2 • C. Park et al.

1. INTRODUCTION

NAND flash memory has become more common in many mobile devices, such
as MP3 players, MMC cards, cellular phones, and PDAs, as it is nonvolatile,
reliable, uses relatively less power, and is more resistant to physical shocks.
As the cost per bit has continuously decreased, NAND flash-based solid-state
drives are penetrating the laptop PC market as a complementary medium or a
competitive replacement to the magnetic disks that have been used since their
introduction [Min 2004].

However, unlike magnetic disks, NAND flash memory is characterized by
its erase-before-write operation; it must be erased before new data is written
to a given physical location. This inherently necessitates NAND flash manage-
ment software known as an FTL (flash translation layer), which handles the
algorithmic sequences of read, write, and erase operations of NAND flash. The
FTL receives read and write requests and maps a logical address to a physical
address in NAND flash.

Although a key role of the FTL is to hide the technological details of NAND
flash and to maximize the performance and lifetime of the underlying storage
device, it is designed and implemented with different constraints, depending
on each target application. In the case of embedded storage architecture for
mobile devices (Figure 1(a)), the FTL is implemented as a block device driver
below file systems, such as FAT16/32. As a result, its interoperability with file
systems and the operating system is an important development issue aside
from performance optimization. Despite the fact that the memory and compu-
tation power restrictions may be relatively less tight because of the abundant
DRAM and high-performance CPU of the host system, emerging multimedia
applications require even higher storage performance. On the other hand, in re-
movable storage architecture, such as MMC (multimedia card) and UFD (USB
flash drive) (Figure 1(b)), the FTL is implemented into the firmware for an on-
board low-cost embedded controller. The read/write performance can be max-
imized with the assistance of dedicated hardware, while limited computation
power and memory resources should be considered when implementing the
FTL.

Another important factor that affects FTL design is the access patterns of
different applications. In particular, the sequential or random-access behavior
and the length of the requested data dominate the performance of FTL. For
example, in the case of a recording application implemented by a digital camera
or camcorder, logical-address accesses are characterized by short random and
long sequential patterns, as shown in Figure 2. The analysis shows that the
short random-access pattern results from access to the file system’s metadata
(FAT, directory entry) and the long sequential pattern is caused by user data
(recorded image).

NAND flash storage embedded in cellular phones and PCs tends to show
comparatively more random-access patterns than sequential types as multiple
access requests from concurrently executed applications typically occur. Con-
sequently, the access patterns of applications are another consideration for an
efficient FTL design.

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, Article 38, Publication date: July 2008.

A Reconfigurable FTL Architecture for NAND Flash-Based Applications • 38:3

Fig. 1. Software architectures for NAND flash-based applications.

Fig. 2. An example of a workload trace from a digital camera.

As the application area of NAND flash has been widened, a flexible FTL ar-
chitecture to cope with various requirements from NAND flash applications has
become a main concern for system designers who need to satisfy time-to-market
delivery requirements coupled with performance and memory constraints.

In this article, a reconfigurable FTL architecture is proposed that aims at
building an FTL that is optimized for each target NAND application in terms
of its performance, endurance, and memory requirements. The proposed FTL
architecture is based on a flexible mapping structure configured using the two
design parameters of the spatial and temporal locality of target applications.
In order to find the optimal parameter values, intuitive, but efficient, workload
analysis is initially performed so that the design space can be narrowed down
without exhaustive exploration of the parameters. In addition, a formal model
of the performance and memory requirements will provide FTL designers with
an analysis tool for correlating the pattern and FTL design parameters of target

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, Article 38, Publication date: July 2008.

38:4 • C. Park et al.

Block 0

Block n-1

Main Area Spare Area

Page 0

Page 1

Page 2

Page 3

Page 0

Page 1

Page 2

Page 3

Page register
Spare

register

I/O Bus

Fig. 3. NAND flash structure.

applications. The usefulness of the proposed FTL architecture is verified in tests
involving actual MP3 and PC applications.

The remainder of this article is organized as follows. Section 2 gives a brief
overview of NAND flash memory and typical FTL concepts. Section 3 dis-
cusses related work and the motivation for the proposed FTL architecture.
In Section 4, a detailed description of the proposed reconfigurable FTL archi-
tecture is presented. Section 5 introduces the performance model of the pro-
posed FTL architecture, in addition to an analysis of it. Finally, the experimen-
tal results are given and the conclusions are presented in Sections 6 and 7,
respectively.

2. BACKGROUND

2.1 NAND Flash Structure

A NAND flash memory component consists of a fixed number of blocks with each
block consisting of 64 pages and each page consisting of 2 KB of main data and
64 bytes of spare data. This is shown in Figure 3. Read and write operations are
performed on a page basis, while an erase operation is executed on a block basis.
In order to read a page, the command code and page address are inputted to the
NAND flash memory through I/O pins. After the “Page Read” latency (refer to
Table I), the selected page is loaded into the page and spare registers. Finally,
the loaded data is transferred to the system memory through the I/O bus. Spare
data can be used to store auxiliary information, including that termed bad-block
identification and error-correction code (ECC) for the associated main data. For
a write operation, a command code and a page address are issued and data is
loaded from the system memory to the page register and the spare register.
After the “Page Program” latency, the data is programmed into the designated
page. For an erase operation, the command code and block address are inputted.
After the “Block Erase” duration, the corresponding block is erased.

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, Article 38, Publication date: July 2008.

A Reconfigurable FTL Architecture for NAND Flash-Based Applications • 38:5

Table I. Operation Latency of

NAND Flasha

Operation Latency

Page read 20 us

Page program 200 us

Block erase 1.5 ms

aSamsung Electronics [2005].

Fig. 4. Logical view of the FTL of NAND flash memory.

Unlike magnetic disks or other semiconductor devices, such as SRAMs and
DRAMs, a write operation requires a relatively long latency compared to a read
operation. In addition, as a write operation may accompany an erase operation,
the write operational latency becomes even longer.

Another limitation of NAND flash memory is that the number of pro-
gram/erase cycles for a block is limited to approximately 100,000. Thus, the
numbers of write and erase operations should be minimized not only to im-
prove the overall performance but also to maximize the lifetime of NAND flash
memory.

2.2 FTL Concepts

A typical FTL will logically divide the NAND flash into a meta data area and
a user data area. The metadata area includes Reserved blocks for replacing
initial or run-time bad blocks, Map blocks for translating logical to physical
addresses, and Write buffer blocks for temporarily storing the incoming write
data (Figure 4). A fixed number of data blocks constitute the user data area in
which the user data resides.

In a situation in which a block consists of four pages and that a sequence
of page-write requests to the logical addresses (3, 1, 1, 3) occur (Figure 4),

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, Article 38, Publication date: July 2008.

38:6 • C. Park et al.

the logical address is initially translated into a physical address based on the
block map table. In this example, all logical addresses happen to belong to the
same data block. The data block is occupied by previous data and an overwrite
operation to NAND flash is not allowed; hence, a temporary block known as
a “write buffer block” is allocated to store the incoming data pages. After the
first two write requests to the logical addresses (3, 1) are performed on the first
and second pages of the write buffer block, the following overwrite requests to
logical addresses (1, 3) are stored in the third and fourth pages, as an in-place
update is prohibited in flash memory. As a result, the first and second pages
are marked as invalid data and the third and fourth pages are kept as valid
data. If there are additional write requests while the write buffer block has
no free pages to write (for simplicity, here the number of write buffer blocks
is considered to be one), new free pages should be produced. To make space
for a new write request, the fully written write buffer block is reclaimed by
merging it with the corresponding data block. During the merge operation, a
new data block that is sourced from free blocks is allocated and valid pages are
copied from the write buffer block and the data block into the new data block.
In this case, the merge operation requires four page-read operations, four page-
program operations, and two block-erase operations (one for the write buffer
block and the other for the data block).

The merge operation consumes a considerable amount of time; therefore,
reducing the numbers of merge operations and the required read/program op-
erations at each merge operation is a main concern with FTL performance. To
address this problem, several mapping schemes have been suggested [Chang
and Kuo 2002, 2004, Kim et al. 2002, Gal and Toledo 2005, Kang et al. 2006].

3. MAPPING SCHEMES AND RELATED WORK

The logical to physical address translation is based on a mapping scheme. There
are two types of mapping schemes depending on the granularity with which the
mapping information is managed: block and page mapping.

In page mapping [Chiang et al. 1999], NAND flash memory is managed on a
page basis. Therefore, a page map table is constructed and maintained in both
NAND flash memory and RAM. A map table entry consists of an LPN (logical
page number) and a PPN (physical page number). When a write request is
sent to some logical page address, the corresponding physical page number is
located using the page map table. If the page found is at that juncture written
with some value, the page is invalidated and the requested data is written to
an available free page.

As an example (see Figure 5), when a write request to logical page address 5 is
inputted to the FTL, the FTL first searches for the corresponding physical page
number using the logical page number, both of which have the same index in the
page map table. As a result of the matching of the address, the corresponding
physical page number was found to be 2 in the NAND flash memory. However,
the physical page number 2 is, in this case, occupied with valid data. Hence, the
requested data should be written to a free page in flash memory. As the second
page of physical block number 1 (physical page number 5) is free, the data

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, Article 38, Publication date: July 2008.

A Reconfigurable FTL Architecture for NAND Flash-Based Applications • 38:7

Fig. 5. Page-mapping scheme.

is written to that location. At the same time, the corresponding map entry is
updated to point to the new page with valid data. The page-mapping scheme has
an advantage in that it writes data to any free page in flash memory, which adds
flexibility to storage management. Therefore, random write-access patterns can
be accommodated without frequent block reclamation processes that involve
a number of page-copy operations and block-erase operations. Although the
page-mapping scheme shows better performance when enough free pages are
available, the invalid pages should be reclaimed as their numbers increase in
order to make free space available for new data. In this case, performance
can degrade drastically. Therefore, an efficient “garbage collection” technique
should be devised. Another problem with page mapping is that it requires a
very large amount of memory space (in both RAM and flash memory) for the
map table. For instance, assuming that the flash memory has a density of 512
MB, a map table size of 1 MB is required. As 1 MB of RAM is not viable in cost-
competitive embedded systems, such as flash memory card storage applications,
a map table caching scheme can be adopted at some performance cost.

In order to reduce the map table size, block mapping can be utilized. In block
mapping [Ban 1995], the logical page address is divided into a logical block
number and a page offset. The logical block number is used to find a free block
that includes free pages, and the page offset is used as an offset to locate the
free page in the corresponding block. As the map table consists of block number
entries, its size can be reduced from 1 MB to 16 KB as a block consists of 64
pages [Samsung Electronics 2005]. Thus, this scheme can be accommodated in
a diverse range of embedded systems resulting from its efficient use of memory.

However, given that the page offset is extracted from the logical page address
of the host, the page offsets of the logical and physical blocks should be identical.
As a result, every overwrite operation to the same logical page may incur a
frequent block-level copy operation.

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, Article 38, Publication date: July 2008.

38:8 • C. Park et al.

Fig. 6. Block-mapping scheme.

For example (see Figure 6), when a write request to logical page address 5
is inputted to the FTL, the logical page address is divided into logical block
number 1 and page offset 1. The physical block number for the corresponding
logical block number 1 is determined first. After the corresponding physical
block number 0 is matched, the logical page offset is added to the determined
physical block number, and the incoming data is then written to physical page
number 1. However, in this case, physical page number 1 has already had data
written to it. Therefore, the data should be written to a free block (physical block
number 2). At the same time, the other pages in the same block where physical
page number 1 is located are copied to the same free block as one logical block
is associated with only one physical block in this scheme. Block mapping yields
better performance over sequential write-access patterns, though it may show
considerable performance degradation over random-access patterns.

As an approach that compromises between page mapping and block mapping,
many hybrid mapping schemes were proposed to reduce not only the mapping
table size, but also the block copy overhead. A hybrid mapping scheme known
as the log block scheme was first presented by Kim et al. [2002]. The key idea of
the log scheme is to maintain a small number of log blocks in flash memory to
serve as write buffer blocks for overwrite operations (hereafter, a write buffer
block is referred to as a log block as their purposes are identical). The log block
scheme allows the incoming data to be appended continuously as long as free
pages are available in the log blocks. When an overwrite operation occurs with
the same logical page data, the incoming data is written to a free page and the
previous data becomes invalid.

For example, in Figure 7, which assumes that the physical block number
0 contains the data of logical page numbers (4, 5, 6, 7), when upcoming write

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, Article 38, Publication date: July 2008.

A Reconfigurable FTL Architecture for NAND Flash-Based Applications • 38:9

Fig. 7. Hybrid mapping scheme.

requests are to logical page numbers (5, 7, 7, 5), they are written to the allocated
log block. The final two writes are overwrites for the first two writes. As a result,
only the last requests to logical page numbers (7, 5) are valid for logical block
number 1. These requests are represented as (5′′, 7′′) in the figure. When a log
block has no additional free pages or when the logical block that contains the
requested page is changed from the previous logical block, the log block and the
corresponding data block are merged into a free block, as shown in Figure 7.
Finally, the merged free block becomes the new data block, and the original
data block and the log block become two free blocks. The free block map table
is omitted in the figure for simplicity.

The log block scheme efficiently deals with both sequential and random
writes. If there is a write request, it writes the data into a log block sequen-
tially and maintains the separate page mapping information only for the log
blocks. As only the small number of log blocks is used by the FTL, the amount
of mapping overhead that is added is low. When all of the log blocks are used
and a new write request comes to a data block, which is not associated with any
log block, one of the log blocks in use should be merged with the corresponding
data block to create writable free space. Thus, the log block scheme may expe-
rience a low utilization of the log blocks as a single log block is associated with
only a single data block. As a result, the number of costly merge operations will
increase with the quantity of unused free pages.

To solve this problem of the log block scheme, the fully associative sector
translation (FAST) scheme has been proposed [Lee et al. 2006]. In FAST, a log
block is shared by all of the data blocks, and every write request can be writ-
ten into the current log block. This effectively improves the storage utilization
of log blocks and greatly delays the merge operation. However, merging may

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, Article 38, Publication date: July 2008.

38:10 • C. Park et al.

be performed more frequently than in previous schemes as a single log block
contains pages that are associated with several data blocks. To offset this phe-
nomenon, FAST dedicates a special log block known as a sequential log block to
handle sequential writes. In particular, FAST may suffer from a longer merge
operation time which should be avoided in real-time constrained applications,
such as voice recording.

Chang and Kuo [2004] proposed a flexible management scheme for large-
scale flash-memory storage systems. It manages a high-capacity flash mem-
ory with different granularity sizes as differently sized leaves of a buddy tree.
Their main goal is to obtain the flexibility of page mapping while requiring
less memory. In contrast to the page- and block-mapping scheme, which both
involve a fixed-size mapping unit, the scheme of Chang and Kuo utilizes map-
ping units of variable sizes. Several experiments were performed to demon-
strate the reduction of the RAM requirements, the performance improvement,
and the lengthening of the flash-memory lifetime in comparison with the sim-
ple page- or block-mapping schemes. The effectiveness of their scheme, how-
ever, is dependent on the pattern of the workloads. Hence, in a worst-case
scenario, the memory requirement becomes similar to that in the page-mapping
scheme.

Kang et al. [2006] proposed a superblock-mapping scheme termed “N to N +
M mapping.” In this scheme, a superblock consists of N adjacent logical blocks,
and the superblock is mapped into a group of N + M physical blocks at the
page level. M represents the number of the log blocks additionally allocated for
the superblock. Normally, N is fixed while M changes dynamically according
to the number of currently available log blocks. If a new log block is allocated to
the superblock, M is increased by one. Moreover, M is decreased when a merge
operation is performed on the log block and the data blocks. Superblocks are
mapped at coarse granularity, while pages inside the superblock are mapped
freely at fine granularity to any location in several physical blocks. To reduce
the amount of extra storage and number of extra flash memory operations,
the fine-grain mapping information is stored in the spare area of NAND flash
memory. Performance evaluations show that the superblock scheme reduces
the level of garbage collection overhead by as much as 40% compared to previ-
ous FTL schemes with roughly the same memory overhead. However, this FTL
design relies on a limited size of the spare area to maintain the page-mapping
table, and the parameters N and M cannot be tailored for the specific require-
ments of various applications. The proposed technique differs from that of Kang
et al.[2006] primarily in that it addresses an efficient design space exploration
method for the optimal values of such parameters as N and M when there is no
limitations associated with the values of these parameters.

4. THE PROPOSED APPROACH: FLEXIBLE GROUP MAPPING

The proposed flexible group-mapping method is based on the log block scheme.
It is similar to the superblock-mapping scheme of Kang et al. [2006].

The basic idea of flexible group mapping is to configure the degree of sharing
of log blocks among data blocks using the block-level spatial locality parameter,

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, Article 38, Publication date: July 2008.

A Reconfigurable FTL Architecture for NAND Flash-Based Applications • 38:11

N, and to manage the degree of the allocation of log blocks for the frequently
updated data blocks (known as hot data) using the delayed merge parameter,
K. The optimal {N, K} parameters are inferred from the access patterns of the
target application as NAND flash applications such as MP3, digital cameras,
and PC applications have a tendency to show specific access patterns based on
limited user scenarios.

In the flexible-mapping scheme, a data block group is a series of data blocks
that consists of N sequential blocks. The parameter N is the number of data
blocks in a data block group. The N parameter indicates the associativity
among neighboring blocks. It explains the evolution from the log block scheme
to FAST in terms of associativity. If N is 1, it corresponds to the log-block
scheme; the direct-mapping scheme. If N is the total number of blocks in NAND
flash, it corresponds to the FAST scheme1—the fully associative mapping
scheme.

A log block group is a set of log blocks related to a specific data block group.
The parameter K denotes the maximum number of log blocks that can be added
to a log block group. The K parameter explains the type of temporal locality
within a block. If some pages are frequently updated in a block, they are known
as hot pages. It is more beneficial to retain hot pages without a merge operation
because they are apt to be updated sooner [Chang and Kuo 2002]. In this case,
the merge operation of the data block including hot pages is delayed by as much
as possible. In other words, the parameter K should be assigned its maximum
value. Otherwise, the value of K does not have to be large.

For instance, the scheme in Figure 8 assumes that a series of write requests
(1, 1, 14, 15, 2, 2, 3, 3) exists. When the log block group 0 is full of valid and
invalid pages, it will be more beneficial to add one more log block than to merge
log block group 0 and data block group 0, as the logical pages (1, 2, 3) are likely
to be hot pages. On the other hand, when the next write request to a logical
address (24, 25, 26, 27) occurs, it is more beneficial to merge log block group
1 into a new data group, as the merge procedure simply requires an update of
the mapping table without valid page copy operations. This merge scheme is
known as a “switch merge”2 in Kim et al. [2002].

Although it appears that adding log blocks is always advantageous, this
procedure is limited by the number of available free blocks. If some specific
data blocks exhaust the log blocks as the K parameter increases, the other data
blocks will have to compete with each other for the allocation of log blocks. This
may cause unanticipated frequent merge operations. This competition can be
lessened by the monopolizing of the volunteer merge operations by data blocks.
In the same way, the N parameter contains a trade off between the utilization
of log blocks and the increased merge cost (e.g., if N is 4, its merge cost will
be increased fourfold compared to when N is 1). As a result, the reasonable
determinations of the N and K parameter values are indispensable in the early
design stages.

1The FAST scheme uses a special block known as a sequential block to efficiently handle long

sequential write patterns.
2In this article, “switch merge” is referred to as “swap merge” without a loss of generality.

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, Article 38, Publication date: July 2008.

38:12 • C. Park et al.

Fig. 8. Flexible group-mapping scheme.

As mentioned earlier, FTL performance is dominated more by the write and
merge operations than by read operations. In the following subsections, the
write and merge schemes employed in the proposed architecture are presented
in detail.

4.1 Write Scheme

In order to translate from a logical to a physical page address, it is necessary
to maintain three mapping tables: (1) the data-block-mapping table (DBMT),
(2) the log-block-mapping table (LBMT), and (3) the log-page-mapping table
(LPMT). The DBMT contains an array of physical block numbers indexed by
logical block numbers. The LBMT contains data block group numbers and their
associated physical block numbers which are the log block numbers for the data
block groups. The LPMT contains associated data block group numbers, logical
page numbers, and physical page numbers. In this table, only the page-mapping
information of the log block exists. In addition, the bad-block-mapping table
(BBMT) is used to replace the initial or runtime bad blocks with reserved blocks.

Figure 9 illustrates the write operation process. In this example, it is as-
sumed that a block consists of four pages (i.e., N is 4 and K is 2). Initially, when
a write request is issued, a check is required to determine if the corresponding
data block group number (DGN) is associated with a log block group. This is
done by searching the LBMT. In this example, the logical page number (LPN)
is 3, DGN3 is 0, and the number of pages to write is 2. If it is assumed that no

3DGN = LPN div (N × the number of pages per block).

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, Article 38, Publication date: July 2008.

A Reconfigurable FTL Architecture for NAND Flash-Based Applications • 38:13

DGN LPN

0

3
LBN PBN

0 100
1 101
2 102
3 103
4 104

DGN PBN

0
300
400

1
500

2

4
11
12
13
145 105

6 206
7 303

Data Block
MappingTable

Log Block
Mapping Table

Log Page Mapping
Table

PPN
1200
1201
1202
1203
1600
1601

1) WRITE : LPN = 3, Num Of Pages = 2
2) WRITE : LPN = 11, Num Of Pages = 4
3) WRITE : LPN = 17, Num Of Pages = 4

17
18
19
20

2000
2001
2002
2003

1

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

3

4

11

12

Data Block Group (DGN=0)

PBN=100 PBN=101 PBN=102 PBN=103 PBN=104 PBN=105 PBN=206 PBN=303

PBN=300

Data Block Group (DGN=1)

Log Block Group

13

14

PBN=400

17

18

19

20

PBN=500

Log Block Group

10

Log Block Group LRUTable Free Block Pool

Fig. 9. Write operation in Flexible Group Mapping (N = 4, K = 2).

log block is attached to a data-block group, a new log block must be allocated
for the data block group from the free block pool. Consequently, the physical
block number (PBN) 300 is written in the LBMT, and two pages (LPN: 3, 4) are
then written in the PBN block 300.

The LPN and associated physical page number (PPN) are written in the
LPMT as a result of the page-mapping operation. When the second write request
comes (LPN = 11, the number of pages = 4), the corresponding DGN 0 exists in
LBMT, but there are not enough empty pages in the log block (PBN = 300) to
write four pages. For this reason, it is necessary to allocate a new log block from
the free block pool. If it succeeds in obtaining a free block, the allocated PBN is
written in LBMT as (DGN = 0, PBN = 400). Following this, four pages (LPN:
11, 12, 13, 14) are written in the PBN blocks 300 and 400. In addition, the LPNs
and PPNs (1202, 1203, 1600, 1601) are written in LPMT. When the third write
request comes (LPN = 17, the number of pages = 4), the corresponding DGN 1
is not found in LBMT and it is necessary to create a new log block group. If it
succeeds in gaining a free block, the allocated PBN is written in LBMT (with
DGN = 1, PBN = 500). Four pages (LPN: 17, 18, 19, 20) are then written in PBN
block 500. In addition, the LPN and PPNs (2000, 2001, 2002, 2003) are written
in the LPMT. If there are no free blocks in the free block pool, it is necessary to
reclaim free blocks using a merge operation.

4.2 Merge Schemes

Figure 10 shows an example of a simple merge operation when N is 4 and K
is 2. Before processing the merge operation, it is necessary to determine the
log block that will serve as the merge target. In the proposed scheme, an LRU
(least recently used) policy is adopted as this policy is considered to be one of
the best replacement policies [Hennessy and Patterson 2003]. According to the
LRU policy, a log block can be selected as a merge target. In this example, it
is assumed that the log block (PBN = 300) is selected as a merge target. As
the log block (PBN = 300) has four valid pages from different data blocks, the
merge operation requires 16 page read/program operations and five block erase

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, Article 38, Publication date: July 2008.

38:14 • C. Park et al.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

3

4

11

12

Data Block Group (DGN=0)

PBN=100 PBN=101 PBN=102 PBN=103

PBN=300

Log Block Group

13

14

PBN=400

0

1

2

3

PBN=600

4

5

6

7

PBN=601

8

9

10

11

12

13

14

15

PBN=602 PBN=603

Free Block Pool

103102101100603602601600 300

LBN PBN
0 600
1 601
2 602
3 603
4 104
5 105
6 206
7 303

Data Block
Mapping Table

DGN PBN

0
400

1
500

2

Log Block
Mapping Table

(a) Simple Merge

Fig. 10. An example of a simple merge operation (N = 4, K = 2).

operations (one for the log block and four for the data blocks). Each data block
in the data block group should be newly allocated, and valid pages are copied
into the new data block. The old data blocks (PBN = 100, 101, 102, 103) and
log block (PBN = 300) are then inserted into the free block pool. Only when a
merge operation occurs does the DBMT change. After the merge operation, a
newly allocated data block number is written in the DBMT with (LBN: PBN) =
(0:600, 1:601, 2:602, 3:603). In addition, the log block entry (DGN = 0:PBN =
300) is removed from the LBMT (in a comparison to the LBMT in Figure 9).

Figure 11 shows an example of a swap-merge operation. If the log block is
occupied by in-place valid pages, reclaiming of the free block can be done by the
swap merge. In this example, the log block (PBN = 300) is written to the same
pages of the data block (PBN = 101). Thus, the log block becomes a new data
block and the old data block (PBN = 101) is inserted into the free block pool.
The DBMT is updated with (LBN:PBN) = (1:300).

Finally, Figure 12 shows an example of a copy-merge operation. If the log
block is partially occupied by in-place pages of a data block, a free-block
reclaim operation can be done by the copy merge. In this example, the log block
(PBN = 300) becomes a new data block by copying two pages from the old data
block (PBN = 101), and the old data block (PBN = 101) is inserted into the free
block pool. The DBMT is updated with (1:300).

5. PERFORMANCE MODEL AND ANALYSIS

Here, flexible FTL architecture that considers not only spatial locality through
the associativity parameter N , but also temporal locality through the de-
layed merge parameter K is presented. Though these parameters effectively

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, Article 38, Publication date: July 2008.

A Reconfigurable FTL Architecture for NAND Flash-Based Applications • 38:15

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

4

5

6

7

D a ta B lo ck G ro u p (D G N = 0)

P B N = 1 0 0 P B N = 1 0 1 P B N = 1 0 2 P B N = 1 0 3

P B N = 3 0 0

L o g B lo ck G ro u p

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

P B N = 1 0 0 P B N = 3 0 0 P B N = 1 0 2 P B N = 1 0 3

LB N P B N
0 100
1 300
2 102
3 103
4 104
5 105
6 206
7 303

D ata B loc k
M apping T able

(b) S w ap M erg e

Fig. 11. An example of a swap merge operation (N = 4, K = 2).

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

4

5

D a ta B lo ck G r o u p (D G N = 0)

P B N = 1 0 0 P B N = 1 0 1 P B N = 1 0 2 P B N = 1 0 3

P B N = 3 0 0

L o g B lo ck G r o u p

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

P B N = 1 0 0 P B N = 3 0 0 P B N = 1 0 2 P B N = 1 0 3

LB N P B N
0 100
1 300
2 102
3 103
4 104
5 105
6 206
7 303

D a ta B loc k
M app ing T ab le

Fig. 12. An example of a copy merge operation (N = 4, K = 2).

configure the FTL architecture and can be geared toward specific NAND flash
applications, finding an optimal parameter set of {N , K } will require a great
amount of time if an efficient design space-pruning method is not provided. For
example, an exhaustive simulation method is not preferable as this requires
that the exploration cost is multiplied by the number of {N , K } combinations,
the length of a given trace set, and the FTL execution time. In this section, an

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, Article 38, Publication date: July 2008.

38:16 • C. Park et al.

efficient exploration method and performance model for exploring the design
space of {N , K } over a given workload is described.

5.1 Workload Analysis

The storage access patterns are investigated in terms of the request density.
Here, R = 〈R0, R1, . . . , RM−1〉 is a sequence of write requests in a given work-
load and Rk denotes the kth write request (0 ≤ k < M). The entire group of
write requests are divided into a series of nonoverlapping request windows W j
of size |W |, which contains 〈R j ·|W |, . . . , R(j+1)·|W |−1〉 for j= 0, 1, . . . , NW − 1,
where NW represents the total number of request windows.4

The request density, RDi, j , is defined as the ratio of the number of requests
accessed in the ith logical block (Ci, j) to the total number of requests in the jth
window such that RDi, j = Ci, j /|W |. From this definition, it is apparent that the
following equation holds:∑

i∈all LBNs

R Di, j = 1

|W |
∑

i∈all LBNs

Ci, j = 1 for any request windowW j .

Here, an example sequence of write requests, R = 〈R0, R1, . . . , R19〉, issued to
data blocks from LBN0 to LBN3, is considered, as shown in Figure 13(a). In
Figure 13, it is assumed that each data block consists of four pages, i.e., |W | = 4.
Figure 13(b) illustrates the corresponding request density table in which RDi, j
is shown for each LBN i and the request window W j . It is important to note
that because LBN2 receives one write request out of the total of four requests
during W3, RD2,3 is calculated as 0.25 in the request density table.

Each RDi, j for W j can be used as a clue to determine the most appropriate
value of N . The associativity parameter N determines how many LBNs are to
be assigned to one log block group. If the request density is high, a small number
of LBNs may suffice to capture the spatial locality. For example, the log block
group associated with RD2,3 may require more log blocks than RD0,4, as LBN2
alone does not have adequate spatial locality in W3. In fact, the number of LBNs
to be allocated to a single log block group can be obtained by taking the inverse
of the request density; of concern here is the minimum value N j for a given
window W j such that

N j =
⌊

min

(
1

RDi, j

)⌋
for i ∈ all LBNs.

N j is regarded as a candidate value for N in the request window W j , and
values of N j obtained for the example trace are displayed at the bottom of the
request distribution table in Figure 13(b). If N is large, high utilization can be
attained for one log block group because many LBNs that exhibit a low request
density share the same log block group. However, this may lead to high merge
costs when a log block is reclaimed, which can degrade the performance. Thus,
it is necessary to determine the minimum N value while obtaining a utilization

4Unless otherwise stated explicitly, it is assumed that |W | equals the number of pages inside a

block in flash memory. Hence, |W | = 64 for typical NAND flash memory.

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, Article 38, Publication date: July 2008.

A Reconfigurable FTL Architecture for NAND Flash-Based Applications • 38:17

Fig. 13. Estimating N j and Ki from an example trace.

rate that is as high as possible. One means of determining the optimal value of
N is to construct histogram of N j values and evaluate only the several topmost
values of N j as the possible candidates for the optimal N . Section 6 shows that
this methodology is reasonably effective in reducing the exploration space.

On the other hand, the optimal value of the delayed merge parameter K can
be predicted by measuring the temporal locality in each LBN. Essentially, it is
considered that LBN i has temporal locality in the request window W j if one
or more pages in LBN i are updated more than once during W j or if one or
more pages in LBN i written in the previous window W j−1 are written again in
the current window W j . Here, for example, Ki, j is considered as the number of
occurrences that satisfies such conditions during the interval from W0 to W j for
LBN i. When PAGEi, j denotes a set of pages in LBN i written during request
window W j , Ki, j can be calculated by the following recurrence relationship:

Ki,0 = 0

Ki, j = Ki, j−1 + di, j for j > 0

where di, j =

⎧⎪⎨
⎪⎩

1 if |PAGEi, j | < Ci, j ∨
(∑

k=0.. j−1

PAGEi,k ∩ PAGEi, j

)

= �.

0 otherwise.

Figure 13(c) presents the values of Ki, j . In Figure 13(c), K0,4 and K1,1 have
been increased by one as two pages are updated in the same window, while K2,4,

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, Article 38, Publication date: July 2008.

38:18 • C. Park et al.

K3,3, and K3,4 have been increased as the pages written in the previous window
are updated again. Here, Ki, j does not increase when |PAGEi, j | = |W |, as in
this case it is possible to perform a swap-merge operation without requiring an
additional log block.

In an ideal situation where the number of log blocks is sufficient, the final
value of Ki, j ’s, namely Ki = Ki,NW −1, represents an update frequency that is
directly related to the number of log blocks that should be given to the particular
value of LBN i. A larger value of Ki implies that more pages are updated
in the logical block, thus requiring more log blocks. As with the associative
parameter N , the optimal value of K for all LBNs can be found by evaluating
only statistically significant values among Ki.

5.2 Performance Analysis

For the simplicity of analysis, it was assumed that the size of every write request
is only one sector. Given that any write request with more than one sector
can be converted into a series of one sector write request, this is a reasonable
assumption.

Here, Ak is the active data block accessed by Rk and AGk is the active-
data block group accessed by Rk . Hence, AGk always contains Ak from the
definition. In addition, SA(W j) and SAG(W j) is the set of active blocks and
the set of active block groups that are accessed by the requests issued in W j ,
respectively. Finally, the number of log blocks associated with AGk is defined
as L (AGk).

When request Rk arrives in request window W j , a merge operation occurs if
the following condition (Eq. 1) is satisfied, where LB is the maximum number
of log blocks available in the system.∑

AGk∈SAG(W j)

L(AGk) > LB (1)

From the definition of K , the number of log blocks for each active group is
smaller than K ; that is, L(AGk) ≤ K . Thus, Eq. (1) can be converted as follows:

|SAG(W j)| × K ∂ > LB for ∂(0 ≤ ∂ ≤ 1) (2)

The constant ∂ is associated with the update frequency for the input pattern.
If a large portion of requests in W j access an active group, the group may have
more log blocks than any other active groups. In such a case, the value of ∂ may
be close to 0 because K is not a strict condition that leads to a merge operation.
On the other hand, if the requests in W j are evenly scattered over many active
groups, the requests attempt to obtain their log blocks competitively, which
results in many merge operations. In this case, |S AG(W j)| is larger than that
of the first case, and the large value of K can invoke more frequent merge
operations. Thus, the value of ∂ is close to 1.

Moreover, the value of |SAG(W j)| can be expressed by
|S A(W j)|

N ε for 0 ≤ ε ≤
1. If the size of W j is reasonably large, and the request types of the input
pattern do not have much variation, S A(W j) can be approximately expressed
by a constant C. The value of ε associated with the associativity of the pattern.
If the associativity is strong, the active blocks may be consecutive data blocks.

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, Article 38, Publication date: July 2008.

A Reconfigurable FTL Architecture for NAND Flash-Based Applications • 38:19

Thus, the number of active group becomes similar to that of the active blocks

divided by N (|SAG(W j)| ≈ |SA(W j)|
N), as a block group has N consecutive data

blocks. From this result, the value of ε can go to 1. On the other hand, if the
input pattern has poor associativity, the value of ε becomes nearly 0. From these
results, the equation below can be obtained.

C × K ∂

N ε
> LB for a constant C. (3)

From this equation, an analysis of the performance of the MP3 and PC patterns
can be performed. In the MP3 pattern, the requests in a window access a very
small number of blocks. Thus, ∂ is close to 0. Moreover, it has poor associativity
in a request window and N is also close to 0. In this case, the sizes of N and K
are not major factors in the creation of a merge operation. From Figure 19, it
is known that N and K do not affect the performance strongly.

In the access pattern of a PC application, the requests in a request window
access many active log groups evenly and the value of ∂ is close to 1. In addition,
it has more associativity than the MP3 pattern. However, the associativity is
not strong and ε is not large. In this case, a large value of K can result in many
merge operations and poor performance can result. In addition, N does not
have significant effects upon the write performance. From Figure 18, it is clear
that a small value of K produces superior performance.

5.3 Memory Requirement Analysis

The memory usage for the active log group was computed. An active log group
has three data structures. First, it maintains a page map table for 64N pages
in the log group. As the memory usage for the information for each page is con-
stant, the total memory usage for the table is c1N bytes. Next, the active log
group maintains some information for one or more log objects. A data structure
related to a log block has a small constant number of variables that approxi-
mates the number of valid pages in the log. The memory for this information is,
at most, c2K because the log group has K logs. Finally, log group has a small
number of additional variables that approximates the number of logs. From
these results, the total memory requirement can be expressed by the following
equation:

Memory requirement = |SAG(W j)| × (c0 + c1N + c2K)

6. EXPERIMENTAL RESULTS

The traces analyzed in this article were collected using an Intel Pentium-4 PC
system with 512 MB of RAM and an 80 GB hard disk. The operating system
was Windows XP, and the file system was NTFS. The traces were obtained from
an in-house monitoring tool for a disk-access pattern.

Upon closer inspection of the trace data and the statistical analysis of
“Internet/MS Office use case” in Figure 14, significant randomness in stor-
age accesses are found, as small temporary files are created and deleted dur-
ing Internet surfing activities. In addition, accesses related to the internal

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, Article 38, Publication date: July 2008.

38:20 • C. Park et al.

0 10000 20000 30000 40000 50000 60000

0.00E+000

2.00E+007

4.00E+007

6.00E+007

8.00E+007

S
e

ct
o
r

A
d

d
re

ss

Request

Virtual memory paging

Temporary Internet files

NTFS meta data update
MS Office file edit/save

Fig. 14. Trace distribution from PC applications.

0 50,000 100,000 150,000 200,000 250,000

0

200,000

400,000

600,000

800,000

1,000,000

S
e

ct
o

r
A

d
d

re
ss

Request

FAT, directory entry

MP3 data

Fig. 15. Trace distribution from an MP3 download.

activities of the operating system were found, which included virtual mem-
ory paging and metadata updates of the file system. These simultaneous
read/write requests to storage devices are multiplexed in storage systems.
This observation implies that multiple working sets exist at the same time.
For example, “Internet Explorer,” “MS Office,” “Virtual memory manager,” and
“File System” are independently accessing the storage system with their own
strong spatial locality and high tendencies to update their data with temporal
locality.

On the other hand, the “MP3 file download use case” exhibits a mostly se-
quential access pattern, even though there are small-sized random requests be-
cause of file system metadata (e.g., FAT, directory entry) updates (see Figure 15).

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, Article 38, Publication date: July 2008.

A Reconfigurable FTL Architecture for NAND Flash-Based Applications • 38:21

Fig. 16. Distribution of N’s and K’s for PC applications.

Fig. 17. Distribution of N and K values for the MP3 application.

From the storage access patterns shown in Figures 14 and 15, the following
distributions are obtained for possible candidates of N and K . Each distribution
is obtained as described in Section 5.1. The result of �min(1

R Di, j
) is calculated

for each window W j and the distribution of the values are obtained, as shown
in Figure 16 (left). The number of updates within each LBN are also counted
and the distribution of K obtained, as shown in Figure 16 (right).

In the experiments, the PC applications show more associativity than the
MP3 case, as MP3 file downloading results in a sequential write pattern. In
Figures 16 and 17, the values of 2 ∼ 8 for the PC, and 1 ∼ 2 for the MP3
can be taken as possible candidates for the parameter N by considering the
deviation.

Similarly, the values of 4 ∼ 8 for PC and 10 ∼ 30 for MP3 can be selected as
the possible candidates for the parameter K . Particularly, sequential requests
have little effect on the performance according to N and K . Accordingly, the
distributions for other types of requests apart from sequential requests is sparse
and contains a large amount of deviation.

In order to verify the usefulness of the proposed design space-pruning
method, all the pairs of N and K were simulated and a performance map
was created. The map shows performance of the every combination of {N , K },
from the best case to various degraded cases. As shown in Figure 18, the

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, Article 38, Publication date: July 2008.

38:22 • C. Park et al.

Fig. 18. PC application performance variation with the change of N and K.

Fig. 19. MP3 download performance variation with the change of N and K.

recommended sets of {N = 2, 4, 8, K = 4, 8} include the best performance com-
bination of {N , K }, as expected.

With the MP3 usage case, the recommended sets of {N= 1, 2, K = 8∼32}
include the best performance combination of {N , K }, as expected (cf. Figure 19).

7. CONCLUSIONS

This article introduced a reconfigurable FTL architecture to efficiently handle
diverse NAND flash applications ranging from MP3 to SSD for a PC. The asso-
ciativity between data blocks was parameterized using N , the number of data
blocks in a data block group, and K , the maximum number of log blocks in a
log block group that belong to a group of N data blocks. In order to efficiently
explore the design space, a workload analysis method based on the density
distribution of given requests and the update frequency is proposed. The ex-
perimental results show that the proposed architecture can be reconfigured
to a given workload ranging from MP3 to PC applications and that the pro-

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, Article 38, Publication date: July 2008.

A Reconfigurable FTL Architecture for NAND Flash-Based Applications • 38:23

posed analysis method can efficiently find the optimal N and K values within
a reasonable amount of time.

REFERENCES

BAN, A. 1995. Flash file system. United States Patent, No. 5,404,485 (Apr.).

CHANG, L. P. AND KUO, T. W. 2002. An adaptive striping architecture for flash memory storage sys-

tems of embedded systems. In Proceedings of the 8th IEEE Real-Time and Embedded Technology
and Applications Symposium.

CHANG, L. P. AND KUO, T. W. 2004. An efficient management scheme for large scale flash memory

storage systems. In Proceedings of the ACM Symposium on Applied Computing (SAC). ACM,

New York. 862–868.

CHIANG, M.-L., LEE, P. C. H., AND CHANG, R.-C. 1999. Using data clustering to improve cleaning

performance for flash memory. Softw. Pract. Exp. 29, 3, 267–290.

GAL, E. AND TOLEDO, S. 2005. Algorithms and data structures for flash memories. ACM Comput.
Surv. 37, 138–163.

HENNESSY, J. L., AND PATTERSON, D. A. 2003. Computer Architecture: A Quantitative Approach 3rd

Ed. Morgan Kaufmann, Burlington, MA.

KANG, J. U., JO, H., KIM, J. S., AND LEE, J. 2006. A superblock-based flash translation layer for

NAND flash memory. In Proceedings of the 6th ACM/IEEE Conference on Embedded Software
(EMSOFT’06). Seoul, S. Korea.

KIM, J. S., KIM, J. M., NOH, S. H., MIN, S. L., AND CHO, Y. K. 2002. A space-efficient flash translation

layer for compact flash systems. IEEE Trans. Cons. Elect. 48, 366–375.

LEE, S.-W., PARK, D.-J., CHUNG, T.-S., LEE, D.-H., PARK, S., AND SONG H.-J. 2006. A log buffer based

flash translation layer using fully associative sector translation. ACM Trans. Embed. Comput.
Syst.

MIN, S. L. 2004. Love/hate relationship between flash memory and microdrive for low-power

portable storage. In 1st International Workshop on Power-Aware Real-Time Computing, Pisa,

Italy.

SAMSUNG ELECTRONICS. 2005. NAND Flash Memory & Smart-Media Data Book.

Received September 2007; accepted December 2007

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, Article 38, Publication date: July 2008.

