
SSD-HDD-Hybrid Virtual Disk
in Consolidated Environments

Heeseung Jo1,*, Youngjin Kwon1, Hwanju Kim1, Euiseong Seo2,
Joonwon Lee3, and Seungryoul Maeng1

1 Korea Advanced Institute of Science and Technology (KAIST),

335 Gwahangno, Yuseong-gu, Daejeon, Korea
2 Ulsan National Institute of Science and Technology (UNIST)

100 Banyeon-ri, Eonyang-eup, Ulju-gun, Ulsan, Korea
3 SungKyunKwan university,

300 Cheoncheon-dong, Jangan-gu, Suwon, Gyeonggi-do, Korea
1 {heesn, yjkwon, hjukim, maeng}@camars.kaist.ac.kr,

2 euiseong@unist.ac.kr, 3 joonwon@skku.edu

Abstract. With the prevalence of multi-core processors and cloud computing,
the server consolidation using virtualization has increasingly expanded its
territory, and the degree of consolidation has also become higher. As a large
number of virtual machines individually require their own disks, the storage
capacity of a data center could be exceeded. To address this problem, copy-on-
write storage systems allow virtual machines to initially share a template disk
image. This paper proposes a hybrid copy-on-write storage system that
combines solid-state disks and hard disk drives for consolidated environments.
In order to take advantage of both devices, the proposed scheme places a read-
only template disk image on a solid-state disk, while write operations are
isolated to the hard disk drive. In this hybrid architecture, the disk I/O
performance benefits from the fast read access of the solid-state disk, especially
for random reads, precluding write operations from the degrading flash memory
performance. We show that the hybrid virtual disk, in terms of performance and
cost, is more effective than the pure copy-on-write disks for a highly
consolidated system.

Keywords: Consolidation, Virtual machine (VM), Copy-on-write (CoW),
Hybrid storage.

1 Introduction

Virtualization enables multiple operating systems to run on a single physical machine,
and server consolidation systems using virtualization have expanded their territory

* Please note that the LNCS Editorial assumes that all authors have used the western
naming convention, with given names preceding surnames. This determines the
structure of the names in the running heads and the author index.

significantly, especially in large-scale computing systems or cluster systems. This
trend is based on the effort to lower the management cost, which is one of the primary
factors for server hosting centers or the server market. With server consolidation,
fewer physical machines are needed to run the same number of servers, thus saving
power and space. These factors are directly related to the total cost of ownership; it is
known that 50-70% of reduction could be possible [1]. Moreover, the virtualized
system is also advantageous due to the availability and manageability of servers.

Storage virtualization has been less focused than other resources, such as memory
and CPU, since disks have better density and are easily sharable via network attached
storage. The introduction of cloud computing, however, makes efficient storage
virtualization more relevant in terms of disk capacity. Cloud environments allow
thousands of cloud users to store their own contents and privately view their storage.
With more virtual machines (VMs), one VM will require more storage space due to
operating systems and applications that become richer and larger. Therefore, the
capacity requirements for storages are expected to grow exponentially. Data centers
serving a large-scale VM farm cannot extend their storage infinitely, since the cost of
doing so is not inexpensive, after taking into account ownership costs such as
maintenance, cooling, and space. Since traditional sharing-based storage cannot deal
with this requirement, many data centers are unable to afford the storage capacity for
private disks required by cloud users.

Two representative approaches have been developed to relieve the burst
requirement of storage in virtualized environments: copy-on-write (CoW) storage and
content addressable storage (CAS) [2, 3]. First, CoW storage enables multiple VMs to
initially share a template disk image. This mechanism allows read-only sharing by
isolating any write attempts from the template disk image. This approach was adopted
in QCOW [4], CoWNFS [5], and Parallax [6]. Second, CAS uses a content-based
address to access a disk block. This mechanism does not require even template disk
image sharing, but incurs computational overheads. Although these two approaches
significantly reduce disk footprints, they do not improve the disk I/O performances of
those mechanisms.

This paper presents a hybrid CoW virtual disk that combines the solid-state disk
(SSD) and hard disk drive (HDD) within a highly consolidated system. The SSD-
HDD-hybrid virtual disk (HVD) uses SSD for read-only template storage, whereas
privately written data are stored in HDD. HVD gains high disk I/O performance from
the fast read operations of SSD, especially for random reads. Since the read
operations of consolidated VMs are multiplexed, a sequential read stream of each VM
could be broken, and thereby realized as small random reads. Further, the isolation of
write operations from SSD eliminates drawbacks from write I/O, such as erase-
before-write and wear-out. Our evaluation results indicate that the hybrid architecture
of HVD outperforms HDD-only or SDD-only storage. For several real workloads,
HVD shows more than 40% performance enhancement and does not suffer from the
heavy write, which is the main weakness of SSD.

The rest of this paper is organized as follows: Section 2 describes the design and
implementation of HVD and discusses related challenging issues. Section 3 presents
the evaluation results of HVD compared with pure storage by using several micro-
benchmarks and real workloads. Finally, we summarize the paper and present a future
direction in Section 4.

2 Hybrid Virtual Disk (HVD)

This section describes the overall architecture of HVD. First, we give a brief
description of the virtualized environments using CoW storage. Then, we present the
hybrid architecture of HVD and its implementation. Finally, we illustrate migrating
data between SSD and HDD, a challenging issue for HVD architecture.

2.1 CoW Storage in Virtualized Systems

In virtualized environments, the CoW mechanism over virtual disks has been
prevalent due to its efficient use of disk and easy management of snapshot [12, 13, 6].
The CoW mechanism is a well-known technique that allows multiple entities to share
a resource, until a write attempt occurs to the shared resource; once written, the
shared resource is copied to a newly allocated space for the private use of the resource.
In this manner, a CoW disk enables multiple VMs to share a template disk image
while presenting each VM with the private view of its own storage. In addition, the
CoW disk can support fast snapshots by preserving metadata for the current disk
image.

The CoW disk is compelling in consolidated environments for three reasons. First,
many VMs typically run the same operating systems and applications, especially in
cluster-based systems, which provide replicated services for reliability and load
balancing [5]. In this system, multiple VMs can share a template disk image that
contains common operating systems and applications in a CoW manner, thereby
reducing disk footprints. Second, as the degree of consolidation has grown
considerably, a virtualized data center could accommodate many more servers than a
native data center. Since each server at least requires a system image from which to
boot, a large number of servers may exceed the storage capacity [14]. The CoW disk
can effectively relieve this increased requirement of storage capacity. Finally,
snapshot is a frequent operation used to control the history of a virtual disk for
reliability. As cloud computing has emerged in large-scale consolidated environments,
reliability is now a more important concern to cloud users. The efficient snapshot
functionality of the CoW disk enables fast backup and recovery of storage.

2.2 SSD-HDD-Hybrid Design

To maximize the advantages and to minimize the drawbacks of SSD, we introduce the
HVD for virtualized environments. In HVD, the read-only templates of VM disk
images are stored on SSD to support fast read operations. On the other hand, the
privately written blocks of a VM are placed on HDD. This design is inspired by the
asymmetric I/O characteristic of SSD; the write operation is slow and varied, whereas
the read operation is fast and uniform.

SSD is currently an emerging storage device for server systems to enhance the disk
I/O performance [9, 10]. SSD is a NAND flash memory-based storage device that is
expected to replace HDD in the near future because of its versatile features, such as
non-volatility, solid-state reliability, low power consumption, shock resistance, and

high cell densities [7, 8, 11]. SSD supports high read performance, especially for
random reads, since it does not include HDD-like mechanical parts that incur seek
and rotational delays. SSD, however, has several weak points caused by the nature of
NAND flash memory. One is the erase-before-write characteristic that a page, which
is the basic unit of read and write operations, should be erased before being rewritten
in the same location. The erase operations can only be performed on a block, which is
larger than a page. Therefore, SSD shows slow and non-uniform write latency.
Another limitation is the wear-out problem. Unfortunately, each block in flash
memory has a limited number of erase/write cycles, and data in a block become
unreliable if the block reaches this limit. The current limit for single-level cell NAND
flash memory is approximately 100,000 erase/write cycles.

Considering these features of SSD, the SSD-HDD-hybrid scheme has several
advantages. First, HVD supports fast read accesses to a template disk image, which
typically contains rich applications, libraries, and common data contents. HVD
improves user experiences by boosting the startup of applications and the loading of
libraries. In addition, random read accesses to a template disk image benefit from
SSD. Since multiple sequential read streams from guest VMs are fairly multiplexed,
each stream might be broken into small random read operations, which result in the
poor performance of HDD. SSD provides better latency for the broken random reads.
Next, isolating writes from SSD eliminates the aforementioned problems induced
from write operations. As HVD preserves a template disk image on SSD from write
operations, SSD does not suffer from wear-out and overheads for erase-before-write.
Finally, HVD allows for cost-effective storage, in terms of performance and capacity.
Since SSD is more expensive than HDD with the same capacity, pure SSD-based
storage might not be an affordable option to store large amounts of private data of
VMs. HVD requires SSD capacity only for template disk images, making our
approach more cost-effective.

2.3 Implementation

We implemented two versions of HVD: HVD based on cowloop [15] and HVD based
on Parallax. Our approach to hybridizing SSD and HDD for a CoW block device can
be applied with low reengineering costs. Moreover, our approach is also advantageous
in terms of transparency. It can be provided to upper layers without any modifications
due to block level implementation.

Cowloop is a simple and lightweight block device used to support the CoW
behavior. Figure 1 shows the HVD implementation overview based on cowloop. A
VM uses the template disk image as read-only, and when the VM updates blocks, the
write operations are forwarded to its cowfile, which stores the privately written blocks.
If a block is written once, the next access to the block is forwarded to its cowfile. For
example, block 1 of VM1 is read from a template disk image, and block 6 that is
written before is read from the cowfile1. For HVD, we place the template disk image
on SSD, and use HDD as cowfile storage.

On the other hand, Parallax is a novel distributed storage system for Xen VMs [20]
and supports the CoW mechanism to reduce the required storage size. Furthermore,
Parallax provides many features, such as network access, snapshot, and the efficient

lock mechanism. Our Parallax version of HVD spontaneously inherits these features.
To support the CoW behavior, Parallax uses a radix tree that translates the logical
block number (LBN) from a VM to the physical block number (PBN). If a VM
updates a block, the related radix tree nodes are created, and their leaf node possesses
the PBN. In addition to PBN, the entry of a leaf node indicates whether a data block is
read-only or written via a bit flag. For HVD, we add a 1 bit locator flag that denotes
whether a block resides in SSD or HDD.

2.4 Migration between SSD and HDD

The current placement policy of HVD has optimization chances to migrate data
between SSD and HDD. In cases where a file is first modified and frequently read
afterward, this file is obtained from HDD without the benefit of SSD. Such write-once
read-many blocks can be migrated to SSD so that better read performance is achieved.
There are various possible methods to identify migratable blocks at different levels of
hierarchy.

First, users can specify rules that reflect their preferences. For example, many
configuration files or static web contents (e.g. /etc, html, or web image files) are
initially modified and primarily read for the rest of their lifetimes. In this case, a user
can define that such files should always reside in SSD. This rule-based approach
should collaborate with the file system to inform HVD of blocks in which a specified
file is located. While requiring user intervention, this method can directly write a
specified file to SSD without migration.

Second, the file system can identify write-once read-many files by monitoring
modification and access times stored in the metadata. This monitoring-based method
enables frequently read files, after being written, to be migrated to SSD without user
intervention. This method, however, requires a monitoring daemon in each guest VM.

Third, HVD maintains read access frequency for each block stored once in a
location of HDD during a certain period. When detecting a frequently read block,

2’ 3’

6’

0’ 2’ 4’

6’

cowloop driver

Template disk image
(SSD)

cowfile 1
(HDD)

cowfile 2
(HDD)

read write read write

0 1 2 3 4

5 6 7 8 9

VM 1 VM 2

Fig. 1. The HVD implementation overview based on cowloop.

HVD migrates this block to SSD. This method is guest VM-agnostic, so that no guest-
level daemon is required. On the other hand, the block-level approach redundantly
manages metadata for each block in order to maintain access frequency.

3 Evaluation

In this section, we evaluate the performance aspect of HVD. Our storage system is
implemented on Xen-3.2.3 with a para-virtualized Linux 2.6.18 kernel for the x86
architecture. The machine for Xen has an Intel Core2 Duo 2.33 GHz CPU with 2 GB
of RAM. The memory size of a driver VM, which is in charge of I/O device accesses
and contains HVD, is configured to 512 MB, and that of each guest VM is set to 128
MB. All tests are performed on a local storage to exclude network overhead.

In all evaluations, we used the cowloop version of HVD, since Parallax has several
functions including a garbage collector and a locking mechanism in addition to the
CoW features. Although Parallax is a more sophisticated virtual disk, we suppose that
the cowloop version of HVD clearly shows the performance gain from our hybrid
approach to exclude the impact of additional features, except the CoW mechanism.
To demonstrate the impact of our hybrid approach, we evaluate HVD in comparison
with the pure CoW disks: cowloop-HDD and cowloop-SSD.

Raw device performance. Seagate barracuda with 7200 RPM [18] and Samsung

SSD [19] are used in all evaluations. These storage devices are selected for a
reasonable performance comparison. Figure 2 shows the raw performances of HDD
and SSD, which are used in this evaluation for several types of disk operations
(sequential read/write, random read/write), and the results are normalized to HDD.
We performed the tests using sysbench [16] on a native machine. As depicted, except
in the case of the random read, HDD performs better than SSD. In the case of the

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Sequential read

N
or

m
al

iz
ed

 th
ou

gh
pu

t

0.0

5.0

10.0

15.0

20.0

Random read
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Sequential write
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Random write

HDD
SSD

Fig. 2. The raw I/O performance comparison between HDD and SSD.

random read, however, SSD shows better performance than HDD by the multiple of
sixteen†.

Micro-benchmark. Figure 3 shows the evaluation result of micro-benchmark
using sysbench. All the tests are performed on a guest VM, and all I/O operations are
delivered to each storage device through a driver VM. The tests are performed for
sequential read/write and random read/write, and the y-axis shows the normalized
throughput.

In the case of the read operation, SSD shows significant effects, especially for the
random read. For the sequential read, unlike a native environment, both cowloop-SSD
and HVD indicate higher throughput than cowloop-HDD. While HDD maximizes the
sequential read performance for a burst read, a driver VM interrupts read operations,
breaking burstness and thus reducing HDD read performance.

For the write operation, the performance of cowloop-HDD and HVD is similar as
expected. The sequential write operation of HDD is much faster than that of SSD due
to the erase-before-write characteristic of SSD. In the case of random write, HDD
shows little higher performance than SSD, since HDD incurs seek and rotational
overheads.

Real workloads. With regard to real workload evaluations, we performed four
workloads: the booting of VMs, the online transaction processing (OLTP), the
decompression, and the data writing. The first two are read-intensive workloads, and
the decompression is read/write mixed with a ratio of 1.5. The last data writing is a
write-intensive workload. The VM configurations for all the tests are the same as that

† A recent high-end SSD for server environments outperforms HDD for all disk

operations, but our current experiments are not conducted with a high-end SSD for a
fair comparison.

0.0

20.0

40.0

60.0

80.0

100.0

Sequential read Random read

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

cowloop-HDD
cowloop-SSD

HVD

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Sequential write Random write
N

or
m

al
iz

ed
 th

ro
ug

hp
ut

cowloop-HDD
cowloop-SSD

HVD

Fig. 3. The I/O performance of cowloop-HDD, cowloop-SSD, and HVD for each operation
type.

of the micro-benchmark test. We evaluate each workload as increasing the number of
VMs. Figure 4 shows the normalized booting time of guest VMs. The performance
gain of HVD is not considerable, since the booting sequence of a VM involves only a
little amount of I/O operations. The next test is the online transaction processing with
Mysql [17] and sysbench, which requests approximately 130 database transactions per
second. The evaluation results are illustrated in Figure 5, and the y-axis is the
normalized average response time. The response time of cowloop-SSD and HVD are
30-60% less than that of cowloop-HDD.

On the other hand, the evaluation result of the decompression is presented in
Figure 6. This workload decompresses the source code of Xen and Linux. The notable
situation occurs when the number of VMs is eight. The execution time of cowloop-

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1 2 4 8

N
or

m
al

iz
ed

 b
oo

tin
g

tim
e

Number of VMs

cowloop-HDD
cowloop-SSD

HVD

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1 2 4 8
N

or
m

al
iz

ed
 re

sp
on

se
 ti

m
e

Number of VMs

cowloop-HDD
cowloop-SSD

HVD

Fig. 4. The booting time of VMs. Fig. 5. The response time of OLTP.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1 2 4 8

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Number of VMs

cowloop-HDD
cowloop-SSD

HVD

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

1 2 4 8

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Number of VMs

cowloop-HDD
cowloop-SSD

HVD

Fig. 6. The execution time of decompression. Fig. 7. The execution time of data

writing.

SSD is longer than that of cowloop-HDD, since SSD shows the slowest operation
latency for heavy random writes, due to erase-before-write. The same case is more
clearly shown in the write-intensive workload, the data writing. As presented in
Figure 7, cowloop-SSD results in a longer execution time when the number of VMs is
more than one. All the results illustrate that HVD has higher disk performance than
cowloop-SSD and cowloop-HDD, especially when a large number of VMs are
consolidated. More significantly, outperforming pure SSD means that HVD is more
cost-effective for server consolidation workloads.

4 Conclusion and Future Work

This paper presents a hybrid virtual disk that makes possible the efficient combination
of SSD and HDD within consolidated environments. We derive the performance
benefit from fast random reads of SSD by locating a read-only template disk image in
SSD, while written data are stored in HDD. This placement policy intensifies the
advantages of SSD, avoiding overheads caused by write operations. The contribution
of this work is that the hybrid CoW storage is obviously advantageous, in terms of
performance and cost, for server consolidation workloads, especially for those in
which sequential operations might be broken into small random ones.

As future work, we plan to implement sophisticated migration techniques between
SSD and HDD. We expect that the identification of write-once read-many data is a
crucial concern for the migration work. In addition, we also consider using SSD as a
cache that temporarily stores the written blocks from guest VMs. There are lots of
related work including the five-minute rule [21], and we will evaluate them in the
virtualization environment and HVD. Efficient migration will make the hybrid virtual
disk approach more successful for virtualized environments.

References

1. http://www.vmware.com
2. Sean Rhea, Russ Cox, Alex Pesterev. Fast, Inexpensive Content-Addressed Storage in

Foundation. In Proceedings of the 2008 USENIX Annual Technical Conference.
3. Anthony Liguori, Eric Van Hensbergen. Experiences with Content Addressable Storage and

Virtual Disks. In Proceedings of the Workshop on I/O Virtualization (WIOV '08), 2008.
4. M. McLoughlin. The QCOW image format. http://www.gnome.org/~markmc/qcow-image-

format.html.
5. Evangelos Kotsovinos, Tim Moreton, Ian Pratt, Russ Ross, Keir Fraser, Steven Hand, and

Tim Harris. Global-scale service deployment in the XenoServer platform. In Proceedings of
the First Workshop on Real, Large Distributed Systems (WORLDS '04). San Francisco,
California, December 2004.

6. D. T. Meyer, G. Aggarwal, B. Cully, G. Lefebvre, M. J. Feeley, N. C. Hutchinson, and A.
Warfield. Parallax: virtual disks for virtual machines. In Proceedings of Eurosys, 2008.

7. F. Douglis, R. Caceres, F. Kaashoek, K. Li, B. Marsh, and J. A. Tauber. Storage alternatives
for mobile computers. In Proceedings of the First Symposium on Operating Systems Design
and Implementation (OSDI), pages 25–37, November 1994.

8. C. Park, J. Seo, D. Seo, S. Kim, and B. Kim. Cost-efficient memory architecture design of
nand flash memory embedded systems. In Proceedings of the 21st International Conference
on Computer Design (ICCD ’03), pages 474–480, October 2003.

9. Adrian M. Caulfield, Laura M. Grupp, and Steven Swanson. Gordon: Using Flash Memory
to B uild Fast, Power-efficient Clusters for Data-intensive Applications. In Proceedings of
the 14th International Conference on Architectural Support for Programming Languages
and Operating Systems 2009.

10. Aayush Gupta, Youngjae Kim, and Bhuvan Urgaonkar. DFTL: A Flash Translation Layer
Employing Demand-based Selective Caching of Page-level Address Mappings. In
Proceedings of the 14th International Conference on Architectural Support for
Programming Languages and Operating Systems 2009.

11. J. Kang, H. Jo, J. Kim, and J. Lee. A Superblock-based Flash Translation Layer for NAND
Flash Memory. In Proceedings of the International Conference on Embedded Software
(EMSOFT), pages 161-170, October 2006. ISBN 1-59593-542-8.

12. VMware, Inc. VMware VMFS product datasheet. http://www.vmware.com/pdf/vmfs_
datasheet.pdf.

13. M. McLoughlin. The QCOW image format. http://www.gnome.org/~markmc/qcow-image-
format.html.

14. A. Warfield, R. Ross, K. Fraser, C. Limpach, and S. Hand. Parallax: Managing storage for a
million machines. In Proceedings of 10th Hot Topics in Operating Systems, May 2005.

15. http://www.atcomputing.nl/Tools/cowloop/
16. http://sysbench.sourceforge.net/
17. http://www.mysql.com/
18. http://www.seagate.com/staticfiles/docs/pdf/marketing/po_barracuda_7200_12.pdf
19. http://www.samsung.com/global/business/semiconductor/productInfo.do?fmly_id=161&par

tnum=MCCOE64G5MPP#component01
20. P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt, and

A. Warfield. Xen and the Art of Virtualization. In Proceedings of the 19th ACM Symposium
on Operating Systems Principles, pages 164-177, 2003.

21. Goetz Graefe. The Five-Minute Rule 20 Years Later. Communications of the ACM, Vol. 52,
No. 7, Pages 48-59.

