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Abstract. With the prevalence of multi-core processors and cloud computing, 
the server consolidation using virtualization has increasingly expanded its 
territory, and the degree of consolidation has also become higher. As a large 
number of virtual machines individually require their own disks, the storage 
capacity of a data center could be exceeded. To address this problem, copy-on-
write storage systems allow virtual machines to initially share a template disk 
image. This paper proposes a hybrid copy-on-write storage system that 
combines solid-state disks and hard disk drives for consolidated environments. 
In order to take advantage of both devices, the proposed scheme places a read-
only template disk image on a solid-state disk, while write operations are 
isolated to the hard disk drive. In this hybrid architecture, the disk I/O 
performance benefits from the fast read access of the solid-state disk, especially 
for random reads, precluding write operations from the degrading flash memory 
performance. We show that the hybrid virtual disk, in terms of performance and 
cost, is more effective than the pure copy-on-write disks for a highly 
consolidated system.  

Keywords: Consolidation, Virtual machine (VM), Copy-on-write (CoW), 
Hybrid storage. 

1   Introduction 

Virtualization enables multiple operating systems to run on a single physical machine, 
and server consolidation systems using virtualization have expanded their territory 
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significantly, especially in large-scale computing systems or cluster systems. This 
trend is based on the effort to lower the management cost, which is one of the primary 
factors for server hosting centers or the server market. With server consolidation, 
fewer physical machines are needed to run the same number of servers, thus saving 
power and space. These factors are directly related to the total cost of ownership; it is 
known that 50-70% of reduction could be possible [1]. Moreover, the virtualized 
system is also advantageous due to the availability and manageability of servers. 

Storage virtualization has been less focused than other resources, such as memory 
and CPU, since disks have better density and are easily sharable via network attached 
storage. The introduction of cloud computing, however, makes efficient storage 
virtualization more relevant in terms of disk capacity. Cloud environments allow 
thousands of cloud users to store their own contents and privately view their storage. 
With more virtual machines (VMs), one VM will require more storage space due to 
operating systems and applications that become richer and larger. Therefore, the 
capacity requirements for storages are expected to grow exponentially. Data centers 
serving a large-scale VM farm cannot extend their storage infinitely, since the cost of 
doing so is not inexpensive, after taking into account ownership costs such as 
maintenance, cooling, and space. Since traditional sharing-based storage cannot deal 
with this requirement, many data centers are unable to afford the storage capacity for 
private disks required by cloud users. 

Two representative approaches have been developed to relieve the burst 
requirement of storage in virtualized environments: copy-on-write (CoW) storage and 
content addressable storage (CAS) [2, 3]. First, CoW storage enables multiple VMs to 
initially share a template disk image. This mechanism allows read-only sharing by 
isolating any write attempts from the template disk image. This approach was adopted 
in QCOW [4], CoWNFS [5], and Parallax [6]. Second, CAS uses a content-based 
address to access a disk block. This mechanism does not require even template disk 
image sharing, but incurs computational overheads. Although these two approaches 
significantly reduce disk footprints, they do not improve the disk I/O performances of 
those mechanisms. 

This paper presents a hybrid CoW virtual disk that combines the solid-state disk 
(SSD) and hard disk drive (HDD) within a highly consolidated system. The SSD-
HDD-hybrid virtual disk (HVD) uses SSD for read-only template storage, whereas 
privately written data are stored in HDD. HVD gains high disk I/O performance from 
the fast read operations of SSD, especially for random reads. Since the read 
operations of consolidated VMs are multiplexed, a sequential read stream of each VM 
could be broken, and thereby realized as small random reads. Further, the isolation of 
write operations from SSD eliminates drawbacks from write I/O, such as erase-
before-write and wear-out. Our evaluation results indicate that the hybrid architecture 
of HVD outperforms HDD-only or SDD-only storage. For several real workloads, 
HVD shows more than 40% performance enhancement and does not suffer from the 
heavy write, which is the main weakness of SSD. 

The rest of this paper is organized as follows: Section 2 describes the design and 
implementation of HVD and discusses related challenging issues. Section 3 presents 
the evaluation results of HVD compared with pure storage by using several micro-
benchmarks and real workloads. Finally, we summarize the paper and present a future 
direction in Section 4. 



2   Hybrid Virtual Disk (HVD) 

This section describes the overall architecture of HVD. First, we give a brief 
description of the virtualized environments using CoW storage. Then, we present the 
hybrid architecture of HVD and its implementation. Finally, we illustrate migrating 
data between SSD and HDD, a challenging issue for HVD architecture. 

2.1   CoW Storage in Virtualized Systems 

In virtualized environments, the CoW mechanism over virtual disks has been 
prevalent due to its efficient use of disk and easy management of snapshot [12, 13, 6]. 
The CoW mechanism is a well-known technique that allows multiple entities to share 
a resource, until a write attempt occurs to the shared resource; once written, the 
shared resource is copied to a newly allocated space for the private use of the resource. 
In this manner, a CoW disk enables multiple VMs to share a template disk image 
while presenting each VM with the private view of its own storage. In addition, the 
CoW disk can support fast snapshots by preserving metadata for the current disk 
image. 

The CoW disk is compelling in consolidated environments for three reasons. First, 
many VMs typically run the same operating systems and applications, especially in 
cluster-based systems, which provide replicated services for reliability and load 
balancing [5]. In this system, multiple VMs can share a template disk image that 
contains common operating systems and applications in a CoW manner, thereby 
reducing disk footprints. Second, as the degree of consolidation has grown 
considerably, a virtualized data center could accommodate many more servers than a 
native data center. Since each server at least requires a system image from which to 
boot, a large number of servers may exceed the storage capacity [14]. The CoW disk 
can effectively relieve this increased requirement of storage capacity. Finally, 
snapshot is a frequent operation used to control the history of a virtual disk for 
reliability. As cloud computing has emerged in large-scale consolidated environments, 
reliability is now a more important concern to cloud users. The efficient snapshot 
functionality of the CoW disk enables fast backup and recovery of storage. 

2.2   SSD-HDD-Hybrid Design  

To maximize the advantages and to minimize the drawbacks of SSD, we introduce the 
HVD for virtualized environments. In HVD, the read-only templates of VM disk 
images are stored on SSD to support fast read operations. On the other hand, the 
privately written blocks of a VM are placed on HDD. This design is inspired by the 
asymmetric I/O characteristic of SSD; the write operation is slow and varied, whereas 
the read operation is fast and uniform. 

SSD is currently an emerging storage device for server systems to enhance the disk 
I/O performance [9, 10]. SSD is a NAND flash memory-based storage device that is 
expected to replace HDD in the near future because of its versatile features, such as 
non-volatility, solid-state reliability, low power consumption, shock resistance, and 



high cell densities [7, 8, 11]. SSD supports high read performance, especially for 
random reads, since it does not include HDD-like mechanical parts that incur seek 
and rotational delays. SSD, however, has several weak points caused by the nature of 
NAND flash memory. One is the erase-before-write characteristic that a page, which 
is the basic unit of read and write operations, should be erased before being rewritten 
in the same location. The erase operations can only be performed on a block, which is 
larger than a page. Therefore, SSD shows slow and non-uniform write latency. 
Another limitation is the wear-out problem. Unfortunately, each block in flash 
memory has a limited number of erase/write cycles, and data in a block become 
unreliable if the block reaches this limit. The current limit for single-level cell NAND 
flash memory is approximately 100,000 erase/write cycles. 

Considering these features of SSD, the SSD-HDD-hybrid scheme has several 
advantages. First, HVD supports fast read accesses to a template disk image, which 
typically contains rich applications, libraries, and common data contents. HVD 
improves user experiences by boosting the startup of applications and the loading of 
libraries. In addition, random read accesses to a template disk image benefit from 
SSD. Since multiple sequential read streams from guest VMs are fairly multiplexed, 
each stream might be broken into small random read operations, which result in the 
poor performance of HDD. SSD provides better latency for the broken random reads. 
Next, isolating writes from SSD eliminates the aforementioned problems induced 
from write operations. As HVD preserves a template disk image on SSD from write 
operations, SSD does not suffer from wear-out and overheads for erase-before-write. 
Finally, HVD allows for cost-effective storage, in terms of performance and capacity. 
Since SSD is more expensive than HDD with the same capacity, pure SSD-based 
storage might not be an affordable option to store large amounts of private data of 
VMs. HVD requires SSD capacity only for template disk images, making our 
approach more cost-effective. 

2.3   Implementation   

We implemented two versions of HVD: HVD based on cowloop [15] and HVD based 
on Parallax. Our approach to hybridizing SSD and HDD for a CoW block device can 
be applied with low reengineering costs. Moreover, our approach is also advantageous 
in terms of transparency. It can be provided to upper layers without any modifications 
due to block level implementation.  

Cowloop is a simple and lightweight block device used to support the CoW 
behavior. Figure 1 shows the HVD implementation overview based on cowloop. A 
VM uses the template disk image as read-only, and when the VM updates blocks, the 
write operations are forwarded to its cowfile, which stores the privately written blocks. 
If a block is written once, the next access to the block is forwarded to its cowfile. For 
example, block 1 of VM1 is read from a template disk image, and block 6 that is 
written before is read from the cowfile1. For HVD, we place the template disk image 
on SSD, and use HDD as cowfile storage. 

On the other hand, Parallax is a novel distributed storage system for Xen VMs [20] 
and supports the CoW mechanism to reduce the required storage size. Furthermore, 
Parallax provides many features, such as network access, snapshot, and the efficient 



lock mechanism. Our Parallax version of HVD spontaneously inherits these features. 
To support the CoW behavior, Parallax uses a radix tree that translates the logical 
block number (LBN) from a VM to the physical block number (PBN). If a VM 
updates a block, the related radix tree nodes are created, and their leaf node possesses 
the PBN. In addition to PBN, the entry of a leaf node indicates whether a data block is 
read-only or written via a bit flag. For HVD, we add a 1 bit locator flag that denotes 
whether a block resides in SSD or HDD. 

2.4   Migration between SSD and HDD 

The current placement policy of HVD has optimization chances to migrate data 
between SSD and HDD. In cases where a file is first modified and frequently read 
afterward, this file is obtained from HDD without the benefit of SSD. Such write-once 
read-many blocks can be migrated to SSD so that better read performance is achieved. 
There are various possible methods to identify migratable blocks at different levels of 
hierarchy. 

First, users can specify rules that reflect their preferences. For example, many 
configuration files or static web contents (e.g. /etc, html, or web image files) are 
initially modified and primarily read for the rest of their lifetimes. In this case, a user 
can define that such files should always reside in SSD. This rule-based approach 
should collaborate with the file system to inform HVD of blocks in which a specified 
file is located. While requiring user intervention, this method can directly write a 
specified file to SSD without migration. 

Second, the file system can identify write-once read-many files by monitoring 
modification and access times stored in the metadata. This monitoring-based method 
enables frequently read files, after being written, to be migrated to SSD without user 
intervention. This method, however, requires a monitoring daemon in each guest VM. 

Third, HVD maintains read access frequency for each block stored once in a 
location of HDD during a certain period. When detecting a frequently read block, 
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Fig. 1. The HVD implementation overview based on cowloop.  



HVD migrates this block to SSD. This method is guest VM-agnostic, so that no guest-
level daemon is required. On the other hand, the block-level approach redundantly 
manages metadata for each block in order to maintain access frequency. 

3   Evaluation 

In this section, we evaluate the performance aspect of HVD. Our storage system is 
implemented on Xen-3.2.3 with a para-virtualized Linux 2.6.18 kernel for the x86 
architecture. The machine for Xen has an Intel Core2 Duo 2.33 GHz CPU with 2 GB 
of RAM. The memory size of a driver VM, which is in charge of I/O device accesses 
and contains HVD, is configured to 512 MB, and that of each guest VM is set to 128 
MB. All tests are performed on a local storage to exclude network overhead.  

In all evaluations, we used the cowloop version of HVD, since Parallax has several 
functions including a garbage collector and a locking mechanism in addition to the 
CoW features. Although Parallax is a more sophisticated virtual disk, we suppose that 
the cowloop version of HVD clearly shows the performance gain from our hybrid 
approach to exclude the impact of additional features, except the CoW mechanism. 
To demonstrate the impact of our hybrid approach, we evaluate HVD in comparison 
with the pure CoW disks: cowloop-HDD and cowloop-SSD. 

 
Raw device performance. Seagate barracuda with 7200 RPM [18] and Samsung 

SSD [19] are used in all evaluations. These storage devices are selected for a 
reasonable performance comparison. Figure 2 shows the raw performances of HDD 
and SSD, which are used in this evaluation for several types of disk operations 
(sequential read/write, random read/write), and the results are normalized to HDD. 
We performed the tests using sysbench [16] on a native machine. As depicted, except 
in the case of the random read, HDD performs better than SSD. In the case of the 
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Fig. 2. The raw I/O performance comparison between HDD and SSD. 



random read, however, SSD shows better performance than HDD by the multiple of 
sixteen†.  
 

Micro-benchmark. Figure 3 shows the evaluation result of micro-benchmark 
using sysbench. All the tests are performed on a guest VM, and all I/O operations are 
delivered to each storage device through a driver VM. The tests are performed for 
sequential read/write and random read/write, and the y-axis shows the normalized 
throughput.  

In the case of the read operation, SSD shows significant effects, especially for the 
random read. For the sequential read, unlike a native environment, both cowloop-SSD 
and HVD indicate higher throughput than cowloop-HDD. While HDD maximizes the 
sequential read performance for a burst read, a driver VM interrupts read operations, 
breaking burstness and thus reducing HDD read performance. 

For the write operation, the performance of cowloop-HDD and HVD is similar as 
expected. The sequential write operation of HDD is much faster than that of SSD due 
to the erase-before-write characteristic of SSD. In the case of random write, HDD 
shows little higher performance than SSD, since HDD incurs seek and rotational 
overheads. 
 

Real workloads. With regard to real workload evaluations, we performed four 
workloads: the booting of VMs, the online transaction processing (OLTP), the 
decompression, and the data writing. The first two are read-intensive workloads, and 
the decompression is read/write mixed with a ratio of 1.5. The last data writing is a 
write-intensive workload. The VM configurations for all the tests are the same as that 
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Fig. 3. The I/O performance of cowloop-HDD, cowloop-SSD, and HVD for each operation 
type.  



of the micro-benchmark test. We evaluate each workload as increasing the number of 
VMs. Figure 4 shows the normalized booting time of guest VMs. The performance 
gain of HVD is not considerable, since the booting sequence of a VM involves only a 
little amount of I/O operations. The next test is the online transaction processing with 
Mysql [17] and sysbench, which requests approximately 130 database transactions per 
second. The evaluation results are illustrated in Figure 5, and the y-axis is the 
normalized average response time. The response time of cowloop-SSD and HVD are 
30-60% less than that of cowloop-HDD.  

On the other hand, the evaluation result of the decompression is presented in 
Figure 6. This workload decompresses the source code of Xen and Linux. The notable 
situation occurs when the number of VMs is eight. The execution time of cowloop-
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Fig. 4. The booting time of VMs. Fig. 5. The response time of OLTP. 
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Fig. 6. The execution time of decompression. Fig. 7. The execution time of data 

writing. 

 



SSD is longer than that of cowloop-HDD, since SSD shows the slowest operation 
latency for heavy random writes, due to erase-before-write. The same case is more 
clearly shown in the write-intensive workload, the data writing. As presented in 
Figure 7, cowloop-SSD results in a longer execution time when the number of VMs is 
more than one. All the results illustrate that HVD has higher disk performance than 
cowloop-SSD and cowloop-HDD, especially when a large number of VMs are 
consolidated. More significantly, outperforming pure SSD means that HVD is more 
cost-effective for server consolidation workloads.  

4   Conclusion and Future Work 

This paper presents a hybrid virtual disk that makes possible the efficient combination 
of SSD and HDD within consolidated environments. We derive the performance 
benefit from fast random reads of SSD by locating a read-only template disk image in 
SSD, while written data are stored in HDD. This placement policy intensifies the 
advantages of SSD, avoiding overheads caused by write operations. The contribution 
of this work is that the hybrid CoW storage is obviously advantageous, in terms of 
performance and cost, for server consolidation workloads, especially for those in 
which sequential operations might be broken into small random ones. 

As future work, we plan to implement sophisticated migration techniques between 
SSD and HDD. We expect that the identification of write-once read-many data is a 
crucial concern for the migration work. In addition, we also consider using SSD as a 
cache that temporarily stores the written blocks from guest VMs. There are lots of 
related work including the five-minute rule [21], and we will evaluate them in the 
virtualization environment and HVD. Efficient migration will make the hybrid virtual 
disk approach more successful for virtualized environments. 
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