Bits, Bytes, and Integers

Spring, 2017
Euiseong Seo
(euiseong@skku.edu)
Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting

Summary
Binary Representations
Encoding Byte Values

- **Byte = 8 bits**
 - Binary 00000000_2 to 11111111_2
 - Decimal: 0_{10} to 255_{10}
 - Hexadecimal 00_{16} to FF_{16}
 - Base 16 number representation
 - Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’
 - Write $FA1D37B_{16}$ in C as
 - `0xFA1D37B`
 - `0xfa1d37b`

<table>
<thead>
<tr>
<th>Hex</th>
<th>Decimal</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0000</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0001</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0010</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0011</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>0100</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>0101</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0110</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>0111</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>1000</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>1001</td>
</tr>
<tr>
<td>A</td>
<td>10</td>
<td>1010</td>
</tr>
<tr>
<td>B</td>
<td>11</td>
<td>1011</td>
</tr>
<tr>
<td>C</td>
<td>12</td>
<td>1100</td>
</tr>
<tr>
<td>D</td>
<td>13</td>
<td>1101</td>
</tr>
<tr>
<td>E</td>
<td>14</td>
<td>1110</td>
</tr>
<tr>
<td>F</td>
<td>15</td>
<td>1111</td>
</tr>
</tbody>
</table>
Programs refer to virtual addresses
- Conceptually very large array of bytes
- Actually implemented with hierarchy of different memory types
- System provides address space private to particular “process”
 - Program being executed
 - Program can clobber its own data, but not that of others

Compiler + run-time system control allocation
- Where different program objects should be stored
- All allocation within single virtual address space
Machine Words

Machine has “Word Size”

- Nominal size of integer-valued data
 - Including addresses
- Most current machines use 32 bits (4 bytes) words
 - Limits addresses to 4GB
 - Becoming too small for memory-intensive applications
- High-end systems use 64 bits (8 bytes) words
 - Potential address space \(\approx 1.8 \times 10^{19} \) bytes
 - x86-64 machines support 48-bit addresses: 256 Terabytes
- Machines support multiple data formats
 - Fractions or multiples of word size
 - Always integral number of bytes
Addresses specify byte locations

- Address of first byte in word
- Addresses of successive words differ by 4 (32-bit) or 8 (64-bit)

<table>
<thead>
<tr>
<th></th>
<th>32-bit Words</th>
<th>64-bit Words</th>
<th>Bytes</th>
<th>Addr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addr</td>
<td>0000</td>
<td>Addr</td>
<td>0000</td>
<td>0000</td>
</tr>
<tr>
<td>Addr</td>
<td>0004</td>
<td>Addr</td>
<td>0000</td>
<td>0001</td>
</tr>
<tr>
<td>Addr</td>
<td>0008</td>
<td>Addr</td>
<td>0000</td>
<td>0002</td>
</tr>
<tr>
<td>Addr</td>
<td>0012</td>
<td></td>
<td></td>
<td>0003</td>
</tr>
</tbody>
</table>

- 32-bit Words
- 64-bit Words
- Bytes
- Addr.
Computer and compiler support multiple data formats

- Using different ways to encode data
 - Integers and floating point
- Using different lengths
Data Representations

<table>
<thead>
<tr>
<th>C Data Type</th>
<th>Typical 32-bit</th>
<th>Intel IA32</th>
<th>x86-64</th>
</tr>
</thead>
<tbody>
<tr>
<td>char</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>short</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>int</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>long</td>
<td>4</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>long long</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>float</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>double</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>long double</td>
<td>8</td>
<td>10/12</td>
<td>10/16</td>
</tr>
<tr>
<td>pointer</td>
<td>4</td>
<td>4</td>
<td>8</td>
</tr>
</tbody>
</table>
A multi-byte object is stored as a contiguous sequence of bytes
- With a address of the object given by the smallest address of the bytes

How should bytes within a multi-byte word be ordered in memory?

Conventions
- Big Endian: Sun, PPC Mac, Internet
 - Least significant byte has highest address
- Little Endian: x86
 - Least significant byte has lowest address
Byte Ordering Example

- **Big Endian**
 - Least significant byte has highest address
- **Little Endian**
 - Least significant byte has lowest address
- **Example**
 - Variable x has 4-byte representation `0x01234567`
 - Address given by `&x` is `0x100`

<table>
<thead>
<tr>
<th>Big Endian</th>
<th>0x100</th>
<th>0x101</th>
<th>0x102</th>
<th>0x103</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>01</td>
<td>23</td>
<td>45</td>
<td>67</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Little Endian</th>
<th>0x100</th>
<th>0x101</th>
<th>0x102</th>
<th>0x103</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>67</td>
<td>45</td>
<td>23</td>
<td>01</td>
</tr>
</tbody>
</table>
Disassembly
- Text representation of binary machine code
- Generated by program that reads the machine code

Example Fragment

<table>
<thead>
<tr>
<th>Address</th>
<th>Instruction Code</th>
<th>Assembly Rendition</th>
</tr>
</thead>
<tbody>
<tr>
<td>8048365</td>
<td>5b</td>
<td>pop %ebx</td>
</tr>
<tr>
<td>8048366</td>
<td>81 c3 ab 12 00 00</td>
<td>add $0x12ab,%ebx</td>
</tr>
<tr>
<td>804836c</td>
<td>83 bb 28 00 00 00</td>
<td>cmpl $0x0,0x28(%ebx)</td>
</tr>
</tbody>
</table>

Deciphering Numbers
- Value: 0x12ab
- Pad to 32 bits: 0x000012ab
- Split into bytes: 00 00 12 ab
- Reverse: ab 12 00 00
Examining Data Representations

- Code to print byte representation of data
 - Textbook Figure 2.4 at page 42
 - Casting pointer to `unsigned char *` creates byte array

```c
typedef unsigned char *pointer;

void show_bytes(pointer start, int len){
    int i;
    for (i = 0; i < len; i++)
        printf("%p\t0x%.2x\n",start+i, start[i]);
    printf("\n");
}
```
show_bytes Execution Example

```c
int a = 15213;
printf("int a = 15213;\n");
show_bytes((pointer) &a, sizeof(int));
```

Result (Linux):

```
int a = 15213;
0x11ffffffcb8 0x6d
0x11ffffffcb9 0x3b
0x11ffffffcba 0x00
0x11ffffffcbb 0x00
```
Representing Integers

- **Decimal:** 15213
- **Binary:** 0011 1011 0110 1101
- **Hex:** 3 B 6 D

int A = 15213;

long int C = 15213;

int B = -15213;

Two’s complement representation
Representing Pointers

```plaintext
int B = -15213;
int *P = &B;
```

<table>
<thead>
<tr>
<th></th>
<th>Sun</th>
<th>IA32</th>
<th>x86-64</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EF</td>
<td>D4</td>
<td>0C</td>
</tr>
<tr>
<td></td>
<td>FF</td>
<td>F8</td>
<td>89</td>
</tr>
<tr>
<td></td>
<td>FB</td>
<td>FF</td>
<td>EC</td>
</tr>
<tr>
<td></td>
<td>2C</td>
<td>BF</td>
<td>FF</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>FF</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7F</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>00</td>
</tr>
</tbody>
</table>

Different compilers & machines assign different locations to objects.
Representing Strings

- Strings in C
 - Represented by array of characters
 - Each character encoded in ASCII format
 - Standard 7-bit encoding of character set
 - Character “0” has code 0x30
 - Digit i has code 0x30+i
 - String should be null-terminated
 - Final character = 0

- Compatibility
 - Byte ordering not an issue

```
char S[6] = "18243";
```
Encode Program as Sequence of Instructions

- Each simple operation
 - Arithmetic operation
 - Read or write memory
 - Conditional branch

- Instructions encoded as bytes
 - Alpha’s, Sun’s, Mac’s use 4 byte instructions
 - Reduced Instruction Set Computer (RISC)
 - PC’s use variable length instructions
 - Complex Instruction Set Computer (CISC)

- Different instruction types and encodings for different machines
 - Most code not binary compatible

Programs are Byte Sequences Too!
For this example, Alpha & Sun use two 4-byte instructions
- Use differing numbers of instructions in other cases
- PC uses 7 instructions with lengths 1, 2, and 3 bytes
 - Same for NT and for Linux
 - NT / Linux not fully binary compatible

```c
int sum(int x, int y)
{
    return x+y;
}
```

<table>
<thead>
<tr>
<th>Alpha sum</th>
<th>Sun sum</th>
<th>PC sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>81</td>
<td>55</td>
</tr>
<tr>
<td>00</td>
<td>C3</td>
<td>89</td>
</tr>
<tr>
<td>30</td>
<td>E0</td>
<td>E5</td>
</tr>
<tr>
<td>42</td>
<td>08</td>
<td>8B</td>
</tr>
<tr>
<td>01</td>
<td>90</td>
<td>45</td>
</tr>
<tr>
<td>80</td>
<td>02</td>
<td>0C</td>
</tr>
<tr>
<td>FA</td>
<td>00</td>
<td>03</td>
</tr>
<tr>
<td>6B</td>
<td>09</td>
<td>45</td>
</tr>
</tbody>
</table>

Different machines use totally different instructions and encodings
Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Summary

Boolean Algebra

- Developed by George Boole in 19th Century
 - Algebraic representation of logic
 - Encode “True” as 1 and “False” as 0

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>A & B = 1 when both A=1 and B=1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 & 0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0 & 1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1 & 0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1 & 1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>~A = 1 when A=0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 ~</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1 ~</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>A^B = 1 when either A=1 or B=1, but not both</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 ^ 0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0 ^ 1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1 ^ 0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1 ^ 1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

-General Boolean Algebras-

- Operate on Bit Vectors
 - Operations applied bitwise

 \[
 \begin{array}{c|c|c|c}
 01101001 & 01101001 & 01101001 \\
 \& 01010101 & | 01010101 & ^ 01010101 \\
 \hline 01000001 & 01111101 & 00111100 \\
 \hline
 \end{array}
 \]

 \[
 \begin{array}{c|c|c|c}
 \sim 01010101 & \sim 01010101 \\
 \hline
 10101010 & 10101010 \\
 \hline
 \end{array}
 \]

- All of the Properties of Boolean Algebra Apply
Bit-Level Operations in C

- Operations &, |, ~, ^ available in C
 - Apply to any “integral” data type
 - long, int, short, char, unsigned
 - View arguments as bit vectors
 - Arguments applied bit-wise
- Examples (char data type)
 - ~0x41 ➔ 0xBE
 - ~01000001₂ ➔ 10111110₂
 - ~0x00 ➔ 0xFF
 - ~00000000₂ ➔ 11111111₂
 - 0x69 & 0x55 ➔ 0x41
 - 01101001₂ & 01010101₂ ➔ 01000001₂
 - 0x69 | 0x55 ➔ 0x7D
 - 01101001₂ | 01010101₂ ➔ 01111101₂
Logic Operations in C

- Contrast to Logical Operators
 - &&, ||,!
 - View 0 as “False”
 - Anything nonzero as “True”
 - Always return 0 or 1
 - Early termination

- Examples (char data type)
 - !0x41 → 0x00
 - !0x00 → 0x01
 - !!0x41 → 0x01
 - 0x69 && 0x55 → 0x01
 - 0x69 || 0x55 → 0x01
 - p && *p (avoids null pointer access)
Shift Operations

Left Shift: \(x << y \)
- Shift bit-vector \(x \) left \(y \) positions
 - Throw away extra bits on left
 - Fill with 0’s on right

Right Shift: \(x >> y \)
- Shift bit-vector \(x \) right \(y \) positions
 - Throw away extra bits on right
 - Logical shift
 - Fill with 0’s on left
 - Arithmetic shift
 - Replicate most significant bit on right

Undefined Behavior
- Shift amount \(< 0\) or \(\geq\) word size
Bitwise xor is form of addition

With extra property that every value is its own additive inverse

- $A \oplus A = 0$

```c
void funny(int *x, int *y)
{
    *x = *x ^ *y;    /* #1 */
    *y = *x ^ *y;    /* #2 */
    *x = *x ^ *y;    /* #3 */
}
```

<table>
<thead>
<tr>
<th></th>
<th>*x</th>
<th>*y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Begin</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>1</td>
<td>A^B</td>
<td>B</td>
</tr>
<tr>
<td>2</td>
<td>A^B</td>
<td>((A^B)^B = A)</td>
</tr>
<tr>
<td>3</td>
<td>((A^B)^A = B)</td>
<td>A</td>
</tr>
<tr>
<td>End</td>
<td>B</td>
<td>A</td>
</tr>
</tbody>
</table>
Summary

- It’s all about bits & bytes
 - Numbers
 - Programs
 - Text
- Different machines follow different conventions
 - Word size
 - Byte ordering
 - Representations and encoding
- Boolean algebra is mathematical basis
 - Basic form encodes “false” as 0, “true” as 1
 - General form like bit-level operations in C
 - Good for representing & manipulating sets
Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting

Summary
Encoding Integers

Unsigned

\[B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i \]

Two’s Complement

\[B2T(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i \]

- **C short** 2 bytes long

  ```
  short int x = 15213;
  short int y = -15213;
  ```

- **Sign Bit**
 - For 2’s complement, most significant bit indicates sign
 - 0 for nonnegative
 - 1 for negative
Encoding Example

\[x = 15213: \quad 00111011 \quad 01101101 \]
\[y = -15213: \quad 11000100 \quad 10010011 \]

<table>
<thead>
<tr>
<th>Weight</th>
<th>15213</th>
<th>-15213</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>32</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>64</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>128</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>256</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>512</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1024</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2048</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4096</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>8192</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>16384</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>-32768</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Sum

\[\text{15213} \quad \text{-15213} \]
Numeric Ranges

- **Unsigned Values**
 - $U_{\text{Min}} = 0$
 - $000...0$
 - $U_{\text{Max}} = 2^w - 1$
 - $111...1$

- **Two's Complement Values**
 - $T_{\text{Min}} = -2^{w-1}$
 - $100...0$
 - $T_{\text{Max}} = 2^{w-1} - 1$
 - $011...1$

- **Other Values**
 - Minus 1
 - $111...1$

Values for $w = 16$

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>UMax</td>
<td>65535</td>
<td>FF FF</td>
<td>11111111 11111111</td>
</tr>
<tr>
<td>Tmax</td>
<td>32767</td>
<td>7F FF</td>
<td>01111111 11111111</td>
</tr>
<tr>
<td>Tmin</td>
<td>-32768</td>
<td>80 00</td>
<td>10000000 00000000</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
<td>FF FF</td>
<td>11111111 11111111</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>00 00</td>
<td>00000000 00000000</td>
</tr>
</tbody>
</table>
Values for Different Word Sizes

<table>
<thead>
<tr>
<th></th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8</td>
</tr>
<tr>
<td>UMax</td>
<td>255</td>
</tr>
<tr>
<td>Tmax</td>
<td>127</td>
</tr>
<tr>
<td>Tmin</td>
<td>-128</td>
</tr>
</tbody>
</table>

Observations
- $|\text{TMin}| = \text{TMax} + 1$
 - Asymmetric range
- $\text{UMax} = 2 \times \text{TMax} + 1$

C Programming
- `#include <limits.h>`
- Declares constants, e.g.,
 - `ULONG_MAX`
 - `LONG_MAX`
 - `LONG_MIN`
- Values platform specific
Equivalence
- Same encodings for nonnegative values

Uniqueness
- Every bit pattern represents unique integer value
- Each representable integer has unique bit encoding

⇒ Can invert mappings
- \(U_{2B}(x) = B_{2U}^{-1}(x) \)
 - Bit pattern for unsigned integer
- \(T_{2B}(x) = B_{2T}^{-1}(x) \)
 - Bit pattern for two’s comp integer

<table>
<thead>
<tr>
<th>(x)</th>
<th>(B2U(x))</th>
<th>(B2T(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>8</td>
<td>–8</td>
</tr>
<tr>
<td>1001</td>
<td>9</td>
<td>–7</td>
</tr>
<tr>
<td>1010</td>
<td>10</td>
<td>–6</td>
</tr>
<tr>
<td>1011</td>
<td>11</td>
<td>–5</td>
</tr>
<tr>
<td>1100</td>
<td>12</td>
<td>–4</td>
</tr>
<tr>
<td>1101</td>
<td>13</td>
<td>–3</td>
</tr>
<tr>
<td>1110</td>
<td>14</td>
<td>–2</td>
</tr>
<tr>
<td>1111</td>
<td>15</td>
<td>–1</td>
</tr>
</tbody>
</table>
Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting

Summary
Mappings between unsigned and two’s complement numbers

- keep bit representations and **reinterpret**

Maintain Same Bit Pattern

- Two’s Complement
 - T2U
 - T2B
 - B2U
- Unsigned
 - ux
 - ux

- Unsigned
 - U2T
 - U2B
 - B2T
- Two’s Complement
 - x
 - x
Mapping Signed ↔ Unsigned

<table>
<thead>
<tr>
<th>Bits</th>
<th>Signed</th>
<th>Unsigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>-8</td>
<td>8</td>
</tr>
<tr>
<td>1001</td>
<td>-7</td>
<td>9</td>
</tr>
<tr>
<td>1010</td>
<td>-6</td>
<td>10</td>
</tr>
<tr>
<td>1011</td>
<td>-5</td>
<td>11</td>
</tr>
<tr>
<td>1100</td>
<td>-4</td>
<td>12</td>
</tr>
<tr>
<td>1101</td>
<td>-3</td>
<td>13</td>
</tr>
<tr>
<td>1110</td>
<td>-2</td>
<td>14</td>
</tr>
<tr>
<td>1111</td>
<td>-1</td>
<td>15</td>
</tr>
</tbody>
</table>

T2U and **U2T** denote the conversion between signed and unsigned numbers.
Mapping Signed ↔ Unsigned

<table>
<thead>
<tr>
<th>Bits</th>
<th>Signed</th>
<th>Unsigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>-8</td>
<td>8</td>
</tr>
<tr>
<td>1001</td>
<td>-7</td>
<td>9</td>
</tr>
<tr>
<td>1010</td>
<td>-6</td>
<td>10</td>
</tr>
<tr>
<td>1011</td>
<td>-5</td>
<td>11</td>
</tr>
<tr>
<td>1100</td>
<td>-4</td>
<td>12</td>
</tr>
<tr>
<td>1101</td>
<td>-3</td>
<td>13</td>
</tr>
<tr>
<td>1110</td>
<td>-2</td>
<td>14</td>
</tr>
<tr>
<td>1111</td>
<td>-1</td>
<td>15</td>
</tr>
</tbody>
</table>

Note: The mapping shows how signed and unsigned integers map to each other, with a difference of 16 between the signed and unsigned values for negative numbers.
Relation between Signed & Unsigned

Two's Complement

<table>
<thead>
<tr>
<th>x</th>
<th>T2B</th>
<th>B2U</th>
<th>ux</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>

Maintain Same Bit Pattern

ux = \begin{cases}
 x & x \geq 0 \\
 x + 2^w & x < 0
\end{cases}

Large negative weight becomes Large positive weight
2’s Comp. → Unsigned
- Ordering Inversion
- Negative → Big Positive

2’s Complement Range

Unsigned Range

TMax
UMax
UMax – 1
TMax + 1
TMax

TMin
0
-1
-2
0
Signed vs. Unsigned in C

├ Constants
 └ By default are considered to be signed integers
 • Unsigned if have “U” as suffix
 • 0U, 4294967259U

├ Casting
 └ Explicit casting between signed & unsigned same as U2T and T2U
 • int tx, ty;
 • unsigned ux, uy;
 • tx = (int) ux;
 • uy = (unsigned) ty;

 └ Implicit casting also occurs via assignments and procedure calls
 • tx = ux;
 • uy = ty;
Expression Evaluation

- If there is a mix of unsigned and signed in single expression
 - Signed values implicitly cast to unsigned
- Including comparison operations $<, >, ==, <=, >=$
- Example $w = 32; TMIN = -2,147,483,648; TMAX = 2,147,483,647$

<table>
<thead>
<tr>
<th>Constant$_1$</th>
<th>Constant$_2$</th>
<th>Relation</th>
<th>Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0U</td>
<td>==</td>
<td>unsigned</td>
</tr>
<tr>
<td>-1</td>
<td>0</td>
<td><</td>
<td>signed</td>
</tr>
<tr>
<td>-1</td>
<td>0U</td>
<td>></td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>-2147483648</td>
<td>></td>
<td>signed</td>
</tr>
<tr>
<td>2147483647U</td>
<td>2147483648</td>
<td><</td>
<td>unsigned</td>
</tr>
<tr>
<td>-1</td>
<td>-2</td>
<td>></td>
<td>signed</td>
</tr>
<tr>
<td>(unsigned) -1</td>
<td>-2</td>
<td>></td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>2147483648U</td>
<td><</td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>(int) 2147483648U</td>
<td>></td>
<td>signed</td>
</tr>
</tbody>
</table>
Casting Basic Rules

- Bit pattern is maintained
 - But reinterpreted
- Can have unexpected effects: adding or subtracting 2^w
- Expression containing signed and unsigned int
 - int is cast to unsigned!!
Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting

- Summary
Sign Extension

- **Task:**
 - Given a w-bit signed integer x
 - Convert it to a $w+k$-bit integer with the same value

- **Rule:**
 - Make k copies of the sign bit:
 - $X = x_{w-1}, \ldots, x_{w-1}, x_{w-1}, x_{w-2}, \ldots, x_0$

![Diagram of sign extension]

- k copies of MSB
- w bits
- k copies of the sign bit
- $w+k$ bits

Sungkyunkwan University
Sign Extension Example

- Converting from smaller to larger integer data type
- C automatically performs sign extension

```c
short int x = 15213;
int ix = (int) x;
short int y = -15213;
int iy = (int) y;
```

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>15123</td>
<td>3B 6D</td>
<td>00111011 01101101</td>
</tr>
<tr>
<td>ix</td>
<td>15123</td>
<td>00 00 3B 6D</td>
<td>00000000 00000000 00111011 01101101</td>
</tr>
<tr>
<td>y</td>
<td>-15123</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
<tr>
<td>iy</td>
<td>-15123</td>
<td>FF FF C4 93</td>
<td>11111111 11111111 11000100 10010011</td>
</tr>
</tbody>
</table>
Prove correctness by induction on k

- Induction step
 - Extending by single bit maintains value

Key observation:
\[-2^w = -2^{w+1} + 2^w\]
Truncating Numbers

- Truncating a number can alter its value
 - A form of overflow
- For an unsigned number of \(x \)
 - Result of truncating it to \(k \) bits is equivalent to computing \(x \mod 2^k \)

```c
int x = 50323;
short int ux = (short) x; // -15213
int y = sx; // -15213
```

\[
\begin{align*}
B2U_k([x_k, x_{k-1}, \ldots, x_0]) &= B2U_w([x_w, x_{w-1}, \ldots, x_0]) \mod 2^k \\
B2T_k([x_k, x_{k-1}, \ldots, x_0]) &= U2T_k(B2U_w([x_w, x_{w-1}, \ldots, x_0]) \mod 2^k)
\end{align*}
\]
Expanding, Truncating: Basic Rules

- Expanding (e.g., short int to int)
 - Unsigned: zeros added
 - Signed: sign extension
 - Both yield expected result

- Truncating (e.g., unsigned to unsigned short)
 - Unsigned/signed: bits are truncated
 - Result reinterpreted
 - Unsigned: mod operation
 - Signed: similar to mod
 - For small numbers yields expected behavior
Advice on Singed and Unsigned

- Implicit conversion of signed to unsigned
 - Can lead to error or vulnerabilities
- Be careful when using unsigned numbers
 - Java supports only signed integers
 - `>>`: arithmetic shift
 - `>>>`: logical shift
Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - *Addition, negation, multiplication, shifting*

- Summary
Claim: following holds for 2’s complement

\[\sim x + 1 = -x \]

Complement

- Observation: \[\sim x + x = 1111...111_2 = -1 \]

\[
\begin{array}{c}
x \quad 10011101 \\
+ \sim x \quad 01100010 \\
\hline
-1 \quad 11111111
\end{array}
\]

Increment

\[\sim x + x + (-x + 1) = -1 + (-x + 1) \]

\[\sim x + 1 = -x \]
Complement & Increment Examples

$x = 15213$

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>15213</td>
<td>3B 6D</td>
<td>00111011 01101101</td>
</tr>
<tr>
<td>$\sim x$</td>
<td>-15214</td>
<td>C4 92</td>
<td>11000100 10010010</td>
</tr>
<tr>
<td>$\sim x + 1$</td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
<tr>
<td>$-x$</td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
</tbody>
</table>

$x = 0$

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0 0 00</td>
<td>00000000 00000000</td>
</tr>
<tr>
<td>~ 0</td>
<td>-1</td>
<td>FF FF</td>
<td>11111111 11111111</td>
</tr>
<tr>
<td>$\sim 0 + 1$</td>
<td>0</td>
<td>0 0 00</td>
<td>00000000 00000000</td>
</tr>
</tbody>
</table>
UNSIGNED ADDITION

Operands: \(w \) bits

True Sum: \(w+1 \) bits

Discard Carry: \(w \) bits

- **Standard addition function**
 - Ignores CARRY output

- **Implements modular arithmetic**

\[
\begin{align*}
s &= UAdd_w(u, v) = u + v \mod 2^w
\end{align*}
\]

\[
UAdd_w(u,v) = \begin{cases}
 u + v & u + v < 2^w \\
 u + v - 2^w & u + v \geq 2^w
\end{cases}
\]
4-bit integers \(u, v \)

Compute true sum \(\text{Add}_4(u, v) \)

Values increase linearly with \(u \) and \(v \)

Forms planar surface
Wraps Around
- If true sum $\geq 2^w$
- At most once

True Sum

0 2^w 2^{w+1}

Modular Sum

Overflow

$U\text{Add}_4(u, v)$
Mathematical Properties of $U\text{Add}$

- Modular Addition Forms an Abelian Group
 - **Closed** under addition
 \[0 \leq U\text{Add}_w(u,v) \leq 2^w - 1 \]
 - **Commutative**
 \[U\text{Add}_w(u,v) = U\text{Add}_w(v,u) \]
 - **Associative**
 \[U\text{Add}_w(t,U\text{Add}_w(u,v)) = U\text{Add}_w(U\text{Add}_w(t,u),v) \]
 - **0** is additive identity
 \[U\text{Add}_w(u,0) = u \]
 - Every element has additive **inverse**
 - Let
 \[U\text{Comp}_w(u) = 2^w - u \]
 \[U\text{Add}_w(u, U\text{Comp}_w(u)) = 0 \]
Two’s Complement Addition

| u | \[\cdots\] | \[\cdots\] | \[\cdots\] | \[\cdots\] |
| + | v | \[\cdots\] | \[\cdots\] | \[\cdots\] | \[\cdots\] |
|---|---|---|---|---|
| u + v | \[\cdots\] | \[\cdots\] | \[\cdots\] | \[\cdots\] |

Operands: \(w\) bits

True Sum: \(w+1\) bits

Discard Carry: \(w\) bits

\(TAdd_w(u, v)\)

- **TAdd** and **UAdd** have identical bit-level behavior
 - Signed vs. unsigned addition in C:
    ```c
    int s, t, u, v;
    s = (int)((unsigned)u + (unsigned)v);
    t = u + v
    ```
 - Will give \(s == t\)
TAdd Overflow

- True sum requires $w+1$ bits
- Drop off MSB
- Treat remaining bits as 2’s complement integer

True Sum

<table>
<thead>
<tr>
<th>True Sum</th>
<th>TAdd Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>011...1</td>
<td>011...1</td>
</tr>
<tr>
<td>0100...0</td>
<td>000...0</td>
</tr>
<tr>
<td>0000...0</td>
<td></td>
</tr>
<tr>
<td>1011...1</td>
<td>-2$^{w-1}$-1</td>
</tr>
<tr>
<td>1000...0</td>
<td>-2w</td>
</tr>
<tr>
<td></td>
<td>100...0</td>
</tr>
</tbody>
</table>
Values
- 4-bit two’s comp.
- Range from -8 to +7

Wraps around
- If sum \(\geq 2^{w-1} \)
 - Becomes negative
 - At most once
- If sum \(< -2^{w-1} \)
 - Becomes positive
 - At most once
Functionality

- True sum requires $w+1$ bits
- Drop off MSB
- Treat remaining bits as 2’s complement integer

$TAdd(u, v) = \begin{cases}
 u + v + 2^w, & u + v < T \min_w \\
 u + v, & T \min_w \leq u + v \leq T \max_w \\
 u + v - 2^w, & T \max_w \leq u + v
\end{cases}$

- Positive Overflow
- Negative Overflow
Mathematical Properties of TAdd

- **Isomorphic group to unsigned with UAdd**
 - \(TAdd_w(u, v) = U2T(UAdd_w(T2U(u), T2U(v))) \)
 - Since both have identical bit patterns

- **Two’s complement under TAdd forms a group**
 - Closed, Commutative, Associative, 0 is additive identity
 - Every element has additive inverse
 - Let
 \[
 TComp_w(u) = U2T(UComp_w(T2U(u)))
 \]
 \[
 TAdd_w(u, TComp_w(u)) = 0
 \]

\[
TComp_w(u) = \begin{cases}
-u & u \neq Tmin_w \\
TMin_w & u = Tmin_w
\end{cases}
\]
Computing exact product of \(w \)-bit numbers \(x, y \)
- Either signed or unsigned

Ranges
- Unsigned: \(0 \leq x \times y \leq (2^w - 1)^2 = 2^{2w} - 2^{w+1} + 1 \)
 - Up to \(2w \) bits
- Two’s complement min:
 \[x \times y \geq (-2^w - 1) \times (2^w - 1) = -2^{2w-2} + 2^{w-1} \]
 - Up to \(2w-1 \) bits
- Two’s complement max:
 \[x \times y \leq (-2^{w-1})^2 = 2^{2w-2} \]
 - Up to \(2w \) bits, but only for \((\text{TMin}_w) \)

Maintaining exact results
- Would need to keep expanding word size with each product computed
- Done in software by “arbitrary precision” arithmetic packages
Unsigned Multiplication in C

<table>
<thead>
<tr>
<th>Description</th>
<th>Illustration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operands: (w) bits</td>
<td>(u)</td>
</tr>
<tr>
<td>True Product: (2w) bits</td>
<td>(u \cdot v)</td>
</tr>
<tr>
<td>Discard: (w) bits</td>
<td>(\text{UMult}_w(u, v))</td>
</tr>
</tbody>
</table>

- **Standard multiplication function**
 - Ignores high order \(w \) bits
- **Implements modular arithmetic**
 - \(\text{UMult}_w(u, v) = u \cdot v \mod 2^w \)
Code Security Example #2

- **SUN XDR library**

 - Widely used library for transferring data between machines

```c
void* copy_elements(void *ele_src[], int ele_cnt, size_t ele_size);
```

```
void* ele_src
```

```
malloc(ele_cnt*ele_size)
```
void* copy_elements(void *ele_src[], int ele_cnt, size_t ele_size) {
 /*
 * Allocate buffer for ele_cnt objects, each of ele_size bytes
 * and copy from locations designated by ele_src
 */
 void *result = malloc(ele_cnt * ele_size);
 if (result == NULL) {
 /* malloc failed */
 return NULL;
 }
 void *next = result;
 int i;
 for (i = 0; i < ele_cnt; i++) {
 /* Copy object i to destination */
 memcpy(next, ele_src[i], ele_size);
 /* Move pointer to next memory region */
 next += ele_size;
 }
 return result;
}
XDR Vulnerability

What if:

- \(\text{ele}_\text{cnt} = 2^{20} + 1 \)
- \(\text{ele}_\text{size} = 4096 \)
- Allocation = ??

How can I make this function secure?

\[\text{malloc} (\text{ele}_\text{cnt} \times \text{ele}_\text{size}) \]
Signed Multiplication in C

<table>
<thead>
<tr>
<th>Operands: (w) bits</th>
<th>(u)</th>
<th>(u \cdot v)</th>
<th>(\ast) (v)</th>
<th>True Product: (2 \ast w) bits</th>
<th>Discard: (w) bits</th>
<th>(\text{TMult}_w(u, v))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(u)</td>
<td>(u \cdot v)</td>
<td>(\ast) (v)</td>
<td>(\text{TMult}_w(u, v))</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Standard Multiplication Function
 - Ignores high order \(w \) bits
 - Some of which are different for signed vs. unsigned multiplication
 - Lower bits are the same
Unsigned vs. Signed Multiplication

- **Unsigned multiplication**

  ```
  unsigned ux = (unsigned) x;
  unsigned uy = (unsigned) y;
  unsigned up = ux * uy
  ```
 - Truncates product to \(w \)-bit number
    ```
    up = UMultw(ux, uy)
    ```
 - Modular arithmetic
    ```
    up = ux * uy \mod 2^w
    ```

- **Two’s Complement Multiplication**

  ```
  int x, y;
  int p = x * y;
  ```
 - Compute exact product of two \(w \)-bit numbers \(x, y \)
 - Truncate result to \(w \)-bit number \(p = TMultw(x, y) \)
Unsigned vs. Signed Multiplication

<table>
<thead>
<tr>
<th>Mode</th>
<th>x</th>
<th>y</th>
<th>x · y</th>
<th>Truncated x · y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsigned</td>
<td>5</td>
<td>3</td>
<td>15</td>
<td>7</td>
</tr>
<tr>
<td>Two’s comp.</td>
<td>-3</td>
<td>3</td>
<td>-9</td>
<td>-1</td>
</tr>
<tr>
<td>Unsigned</td>
<td>4</td>
<td>7</td>
<td>28</td>
<td>4</td>
</tr>
<tr>
<td>Two’s comp.</td>
<td>-4</td>
<td>-1</td>
<td>4</td>
<td>-4</td>
</tr>
<tr>
<td>Unsigned</td>
<td>3</td>
<td>3</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>Two’s comp.</td>
<td>3</td>
<td>3</td>
<td>9</td>
<td>1</td>
</tr>
</tbody>
</table>

Although the bit-level representations of the full products may differ, those of the truncated products are identical.

Figure 2.26 Three-bit unsigned and two's-complement multiplication examples.
Power-of-2 Multiply with Shift

- **Operation**
 - \(u \ll k \) gives \(u \times 2^k \)
 - Both signed and unsigned

<table>
<thead>
<tr>
<th>Operands: (w) bits</th>
<th>(u \ll k)</th>
<th>(\times 2^k)</th>
<th>True Product: (w+k) bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>(u)</td>
<td>(k)</td>
<td>(0 \ldots 010\ldots00)</td>
<td>(u \times 2^k)</td>
</tr>
<tr>
<td>Discard (k) bits: (w) bits</td>
<td>(0 \ldots 0)</td>
<td>(u \times 2^k)</td>
<td></td>
</tr>
</tbody>
</table>

- **Examples**
 - \(u \ll 3 \) \(\equiv \) \(u \times 8 \)
 - \(u \ll 5 - u \ll 3 \) \(\equiv \) \(u \times 24 \)
 - Most machines shift and add faster than multiply
 - Compiler generates this code automatically
C compiler automatically generates shift/add code when multiplying by constant

C Function

```c
int mul12(int x)
{
    return x*12;
}
```

Compiled Arithmetic Operations

```c
leal (%eax,%eax,2), %eax
sall $2, %eax
```

Explanation

```
t <- x+x*2
return t << 2;
```
Quotient of unsigned by power of 2
- $u \gg k$ gives $\lfloor u / 2^k \rfloor$
- Uses logical shift

<table>
<thead>
<tr>
<th>Division</th>
<th>Computed</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>15213</td>
<td>15213</td>
<td>3B 6D 00111011 01101101</td>
</tr>
<tr>
<td>$x \gg 1$</td>
<td>7606.5</td>
<td>7606</td>
<td>1D B6 00011101 10110110</td>
</tr>
<tr>
<td>$x \gg 4$</td>
<td>950.8125</td>
<td>950</td>
<td>03 B6 00000011 10110110</td>
</tr>
<tr>
<td>$x \gg 8$</td>
<td>59.4257813</td>
<td>59</td>
<td>00 3B 00000000 00111011</td>
</tr>
</tbody>
</table>
C Function

```c
unsigned udiv8(unsigned x)
{
    return x/8;
}
```

Compiled Arithmetic Operations

<table>
<thead>
<tr>
<th>shrl $3, %eax</th>
</tr>
</thead>
</table>

Explanation

```
# Logical shift
return x >> 3;
```

- Uses logical shift for unsigned
- For Java Users
 - Logical shift written as >>>
Signed Power-of-2 Divide with Shift

- Quotient of Signed by Power of 2
 - $x \gg k$ gives $\lfloor x / 2^k \rfloor$
 - Uses arithmetic shift
 - Rounds wrong direction when $u < 0$

Division

<table>
<thead>
<tr>
<th>Operands: $x / 2^k$</th>
<th>Division: $x / 2^k$</th>
<th>Result: RoundDown($x / 2^k$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0 0 0 0 0 0</td>
<td>0 0 0 1 0 0 0 0</td>
<td>0 0 0 0 1 1 1 0</td>
</tr>
<tr>
<td>x</td>
<td>$x / 2^k$</td>
<td></td>
</tr>
</tbody>
</table>

Division Table

<table>
<thead>
<tr>
<th>y</th>
<th>$y \gg 1$</th>
<th>$y \gg 4$</th>
<th>$y \gg 8$</th>
</tr>
</thead>
<tbody>
<tr>
<td>-15213</td>
<td>-7606.5</td>
<td>-950.8125</td>
<td>-59.4257813</td>
</tr>
<tr>
<td>-15213</td>
<td>-7607</td>
<td>-951</td>
<td>-60</td>
</tr>
<tr>
<td>C4 93</td>
<td>E2 49</td>
<td>FC 49</td>
<td>FF C4</td>
</tr>
<tr>
<td>11000100 01001011</td>
<td>11100010 01001001</td>
<td>111111100 01001001</td>
<td>11111111 11000100</td>
</tr>
</tbody>
</table>

Binary Point
Correct Power-of-2 Divide

- **Quotient of Negative Number by Power of 2**
 - Want $\left\lfloor \frac{x}{2^k} \right\rfloor$ (Round Toward 0)
 - $\left\lfloor \frac{x}{y} \right\rfloor = \left\lfloor \frac{x + y - 1}{y} \right\rfloor$
 - $\left\lfloor \frac{x}{2^k} \right\rfloor = \left\lfloor \frac{x + 2^k - 1}{2^k} \right\rfloor$
 - Compute as $\left\lfloor \frac{x + 2^k - 1}{2^k} \right\rfloor$
 - In C: $(x + (1<<k) - 1) >> k$
 - Biases dividend toward 0

- **Case 1: No rounding**
 - Biasing has no effect

<table>
<thead>
<tr>
<th>Bias: $+2^k - 1$</th>
<th>Dividend: u</th>
<th>Divisor: 2^k</th>
<th>$\left\lfloor \frac{u}{2^k} \right\rfloor$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1\ldots0\ldots0\ldots0$</td>
<td>$1\ldots1\ldots1\ldots1$</td>
<td>$0\ldots0\ldots1\ldots0\ldots0$</td>
<td>$1\ldots1\ldots1\ldots1$</td>
</tr>
</tbody>
</table>
Case 2: Rounding

Dividend: $x + 2^k - 1$

Divisor: 2^k

$$\left\lfloor \frac{x}{2^k} \right\rfloor$$

Biasing adds 1 to final result
Compiled Signed Division Code

C Function
```c
int idiv8(int x) {
    return x/8;
}
```

Compiled Arithmetic Operations
```
testl %eax, %eax
js  L4
L3:
sarl $3, %eax
ret
L4:
addl $7, %eax
jmp  L3
```

Explanation
```
if x < 0
    x += 7;
# Arithmetic shift
return x >> 3;
```

- Uses arithmetic shift for `int`
- For Java Users
 - Arithmetic shift written as `>>`

Sungkyunkwan University
Addition:
- Unsigned/signed: Normal addition followed by truncate, same operation on bit level
- Unsigned: addition $\mod 2^w$
 - Mathematical addition + possible subtraction of 2^w
- Signed: modified addition $\mod 2^w$ (result in proper range)
 - Mathematical addition + possible addition or subtraction of 2^w

Multiplication:
- Unsigned/signed: Normal multiplication followed by truncate, same operation on bit level
- Unsigned: multiplication $\mod 2^w$
- Signed: modified multiplication $\mod 2^w$ (result in proper range)
Arithmetic: Basic Rules

- **Unsigned ints, 2’s complement ints** are isomorphic rings: isomorphism = casting

- **Left shift**
 - Unsigned/signed: multiplication by 2^k
 - Always logical shift

- **Right shift**
 - Unsigned: logical shift, div (division + round to zero) by 2^k
 - Signed: arithmetic shift
 - Positive numbers: div (division + round to zero) by 2^k
 - Negative numbers: div (division + round away from zero) by 2^k
 Use biasing to fix
Today: Integers

- Representation: unsigned and signed
- Conversion, casting
- Expanding, truncating
- Addition, negation, multiplication, shifting
- Summary
Properties of Unsigned Arithmetic

Unsigned multiplication with addition forms commutative ring

- Addition is commutative group
- Closed under multiplication
 \[0 \leq \text{UMult}_w(u,v) \leq 2^w - 1 \]
- Multiplication Commutative
 \[\text{UMult}_w(u,v) = \text{UMult}_w(v,u) \]
- Multiplication is Associative
 \[\text{UMult}_w(t, \text{UMult}_w(u,v)) = \text{UMult}_w(\text{UMult}_w(t,u), v) \]
- 1 is multiplicative identity
 \[\text{UMult}_w(u,1) = u \]
- Multiplication distributes over addition
 \[\text{UMult}_w(t, \text{UAdd}_w(u,v)) = \text{UAdd}_w(\text{UMult}_w(t,u), \text{UMult}_w(t,v)) \]
Properties of Two’s Comp. Arithmetic

- Isomorphic algebras
 - Unsigned multiplication and addition
 - Truncating to \(w \) bits
 - Two’s complement multiplication and addition
 - Truncating to \(w \) bits

- Both form rings
 - Isomorphic to ring of integers \(\mod 2^w \)

- Comparison to (mathematical) integer arithmetic
 - Both are rings
 - Integers obey ordering properties, e.g.,
 \[
 u > 0 \quad \Rightarrow \quad u + v > v \\
 u > 0, \ v > 0 \quad \Rightarrow \quad u \cdot v > 0
 \]
 - These properties are not obeyed by two’s comp. arithmetic
 \[
 \text{TMax} + 1 \quad == \quad \text{TMin} \\
 15213 \times 30426 == -10030 \quad (16\text{-bit words})
 \]
Why Should I Use Unsigned?

► Practice Problem 2.23
► Don’t use just because number nonnegative
 o Easy to make mistakes

    ```c
    unsigned i;
    for (i = cnt-2; i >= 0; i--)
        a[i] += a[i+1];
    ```
 o Can be very subtle

    ```c
    #define DELTA sizeof(int)
    int i;
    for (i = CNT; i-DELTA >= 0; i-= DELTA)
    ```
► Do use when performing modular arithmetic
 o Multiprecision arithmetic
► Do use when using bits to represent sets
 o Logical right shift, no sign extension
Integer C Puzzles

- $x < 0 \Rightarrow ((x*2) < 0)$
- $u_x \geq 0$
- $x \& 7 == 7 \Rightarrow (x<<30) < 0$
- $u_x > -1$
- $x > y \Rightarrow -x < -y$
- $x * x \geq 0$
- $x > 0 && y > 0 \Rightarrow x + y > 0$
- $x >= 0 \Rightarrow -x <= 0$
- $x <= 0 \Rightarrow -x >= 0$
- $(x|-x)>>31 == -1$
- $u_x >> 3 == u_x/8$
- $x >> 3 == x/8$
- $x \& (x-1) != 0$

Initialization

```c
int x = foo();
int y = bar();
unsigned ux = x;
unsigned uy = y;
```