Representing and Manipulating Integers (3/3)

Jin-Soo Kim (jinsookim@skku.edu)
Computer Systems Laboratory
Sungkyunkwan University
http://csl.skku.edu
• **Ranges of (x * y)**
 - Unsigned: up to 2^w bits
 \[0 \leq x \times y \leq (2^w - 1)^2 = 2^{2w} - 2^{w+1} + 1 \]
 - Two’s complement min: up to 2^w-1 bits
 \[x \times y \geq (-2^{w-1}) \times (2^{w-1} - 1) = -2^{2w-2} + 2^{w-1} \]
 - Two’s complement max: up to 2^w bits (only for TMin2)
 \[x \times y \leq (-2^{w-1})^2 = 2^{2w-2} \]

• **Maintaining exact results**
 - Would need to keep expanding word size with each product computed
 - Done in software by “arbitrary precision” arithmetic packages
Multiplication (2)

- Unsigned multiplication in C
 - Ignores high order w bits
 - Implements modular arithmetic

\[\text{UMult}_w(u, v) = u \cdot v \mod 2^w \]

Operands: w bits

\[\begin{array}{c|c|c|c|c|c|c}
\text{u} & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\hline
\end{array} \]

\[\begin{array}{c|c|c|c|c|c|c}
\text{v} & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\hline
\end{array} \]

True Product: 2*w bits \(u \cdot v \)

\[\begin{array}{c|c|c|c|c|c|c}
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\hline
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\end{array} \]

Discard w bits: w bits

\[\begin{array}{c|c|c|c|c|c|c}
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\hline
\end{array} \]

\[\text{UMult}_w(u, v) \]
Signed multiplication in C

- Ignores high order \(w \) bits
- The low-order \(w \) bits are identical to unsigned multiplication

Examples for \(w = 3 \)

<table>
<thead>
<tr>
<th>Mode</th>
<th>x</th>
<th>y</th>
<th>(x \cdot y)</th>
<th>Truncated (x \cdot y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsigned</td>
<td>5</td>
<td>3</td>
<td>15 [001111]</td>
<td>7 [111]</td>
</tr>
<tr>
<td>Two’s comp.</td>
<td>-3</td>
<td>3</td>
<td>-9 [110111]</td>
<td>-1 [111]</td>
</tr>
<tr>
<td>Unsigned</td>
<td>4</td>
<td>7</td>
<td>28 [011100]</td>
<td>4 [100]</td>
</tr>
<tr>
<td>Two’s comp.</td>
<td>-4</td>
<td>-1</td>
<td>4 [000100]</td>
<td>-4 [100]</td>
</tr>
<tr>
<td>Unsigned</td>
<td>3</td>
<td>3</td>
<td>9 [001001]</td>
<td>1 [001]</td>
</tr>
<tr>
<td>Two’s comp.</td>
<td>3</td>
<td>3</td>
<td>9 [001001]</td>
<td>1 [001]</td>
</tr>
</tbody>
</table>
Multiplication (4)

- Power-of-2 multiply with shift
 - $u << k$ gives $u \cdot 2^k$
 - e.g., $u << 3 == u \cdot 8$
 - Both signed and unsigned
 - Most machines shift and add faster than multiply
 - Compiler generates this code automatically

<table>
<thead>
<tr>
<th>Operands: w bits</th>
<th>u</th>
<th>2^k</th>
</tr>
</thead>
<tbody>
<tr>
<td>$u \cdot 2^k$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>True Product: $w+k$ bits</td>
<td>$u \cdot 2^k$</td>
<td></td>
</tr>
<tr>
<td>Discard k bits: w bits</td>
<td>UMult$_w(u, 2^k)$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TMult$_w(u, 2^k)$</td>
<td></td>
</tr>
</tbody>
</table>

Where u is the w-bit operand, 2^k is the power of 2, and $UMult_w(u, 2^k)$ and $TMult_w(u, 2^k)$ are the unsigned and true multiplication results, respectively.
Multiplication (5)

- Compiled multiplication code
 - C compiler automatically generates shift/add code when multiplying by constant

C Function

```c
int mul12 (int x)
{
    return x * 12;
}
```

Compiled Arithmetic Operations

```
leal (%eax, %eax, 2), %eax ; t ← x + x * 2
sall $2, %eax            ; return t << 2
```
Division (1)

- Unsigned power-of-2 divide with shift
 - \(u \gg k \) gives \(\lfloor u / 2^k \rfloor \)
 - Uses logical shift

<table>
<thead>
<tr>
<th>Expression</th>
<th>Division</th>
<th>Result</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>15213</td>
<td>15213</td>
<td>3B 6D</td>
<td>00111011 01101101</td>
</tr>
<tr>
<td>x >> 1</td>
<td>7606.5</td>
<td>7606</td>
<td>1D B6</td>
<td>00011101 10110110</td>
</tr>
<tr>
<td>x >> 4</td>
<td>950.8125</td>
<td>950</td>
<td>03 B6</td>
<td>00000011 10110110</td>
</tr>
<tr>
<td>x >> 8</td>
<td>59.4257813</td>
<td>59</td>
<td>00 3B</td>
<td>00000000 00111011</td>
</tr>
</tbody>
</table>
Division (2)

- Compiled unsigned division code
 - Uses logical shift for unsigned
 - Logical shift written as `>>>` in Java

C Function

```c
unsigned udiv8 (unsigned x)
{
    return x / 8;
}
```

Compiled Arithmetic Operations

```
shrl $3, %eax ; return t >> 3
```
Division (3)

- Signed power-of-2 divide with shift
 - $x >> k$ gives $\lfloor x/2^k \rfloor$
 - Uses arithmetic shift (rounds wrong direction if $x < 0$)

Operand:
- x
- 2^k

Division:
- $x/2^k$

Result:
- $\text{RoundDown}(x/2^k)$

<table>
<thead>
<tr>
<th>Expression</th>
<th>Division</th>
<th>Result</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>-15213</td>
<td>15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
<tr>
<td>$y >> 1$</td>
<td>-7606.5</td>
<td>-7607</td>
<td>E2 49</td>
<td>11100010 01001001</td>
</tr>
<tr>
<td>$y >> 4$</td>
<td>-950.8125</td>
<td>-951</td>
<td>FC 49</td>
<td>11111100 01001001</td>
</tr>
<tr>
<td>$y >> 8$</td>
<td>-59.4257813</td>
<td>-60</td>
<td>FF C4</td>
<td>11111111 11000100</td>
</tr>
</tbody>
</table>
Division (4)

- Correct power-of-2 divide
 - Want \(\lfloor x / 2^k \rfloor \) (Round Toward 0) when \(x < 0 \)
 - Compute as \(\lfloor (x + 2^k - 1) / 2^k \rfloor \)
 - In C: \((x + (1 << k) - 1) >> k \)
 - Biases dividend toward 0

- Case 1: No rounding
 - Biasing has no effect

\[
\begin{array}{c}
\text{Dividend:} \\
\left\lfloor x / 2^k \right\rfloor \\
\end{array}
\]

\[
\begin{array}{c}
\text{Divisor:} \\
\left\lfloor x / 2^k \right\rfloor \\
\end{array}
\]

- Biases dividend toward 0
Case 2: Rounding

- Biasing adds 1 to final result

\[
\begin{array}{c}
\text{Dividend:} \\
x + 2^k - 1 \\
\hline \\
\text{Divisor:} \\
/ 2^k \\
\end{array}
\]

\[
\begin{array}{c}
x/2^k \\
\end{array}
\]

Incremented by 1

Binary Point

Incremented by 1
Division (6)

- Compiled signed division code
 - Uses arithmetic shift for signed
 - Arithmetic shift written as \gg in Java

C Function

```c
int idiv8 (int x)
{
    return x / 8;
}
```

Explanation

```c
if (x < 0)
    x += 7;
return x >> 3;
```