Bits, Bytes, and Integers

Spring, 2012
Euiseong Seo
(euiseong@skku.edu)
Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting

Summary
Binary Representations
Encoding Byte Values

- **Byte = 8 bits**
 - Binary 00000000_2 to 11111111_2
 - Decimal: 0_{10} to 255_{10}
 - Hexadecimal 00_{16} to FF_{16}
 - Base 16 number representation
 - Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’
 - Write $FA1D37B_{16}$ in C as
 - `0xFA1D37B`
 - `0xfa1d37b`

<table>
<thead>
<tr>
<th>Hex</th>
<th>Decimal</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0000</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0001</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0010</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0011</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>0100</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>0101</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0110</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>0111</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>1000</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>1001</td>
</tr>
<tr>
<td>A</td>
<td>10</td>
<td>1010</td>
</tr>
<tr>
<td>B</td>
<td>11</td>
<td>1011</td>
</tr>
<tr>
<td>C</td>
<td>12</td>
<td>1100</td>
</tr>
<tr>
<td>D</td>
<td>13</td>
<td>1101</td>
</tr>
<tr>
<td>E</td>
<td>14</td>
<td>1110</td>
</tr>
<tr>
<td>F</td>
<td>15</td>
<td>1111</td>
</tr>
</tbody>
</table>
Byte-Oriented Memory Organization

- Programs refer to virtual addresses
 - Conceptually very large array of bytes
 - Actually implemented with hierarchy of different memory types
 - System provides address space private to particular “process”
 - Program being executed
 - Program can clobber its own data, but not that of others

- Compiler + run-time system control allocation
 - Where different program objects should be stored
 - All allocation within single virtual address space
Machine Words

- Machine has “Word Size”
 - Nominal size of integer-valued data
 - Including addresses
 - Most current machines use 32 bits (4 bytes) words
 - Limits addresses to 4GB
 - Becoming too small for memory-intensive applications
 - High-end systems use 64 bits (8 bytes) words
 - Potential address space ≈ 1.8 X 1019 bytes
 - x86-64 machines support 48-bit addresses: 256 Terabytes
 - Machines support multiple data formats
 - Fractions or multiples of word size
 - Always integral number of bytes
Word-Oriented Memory Organization

Addresses specify byte locations:
- Address of first byte in word
- Addresses of successive words differ by 4 (32-bit) or 8 (64-bit)

<table>
<thead>
<tr>
<th>32-bit Words</th>
<th>64-bit Words</th>
<th>Bytes</th>
<th>Addr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addr = 0000</td>
<td>Addr = 0000</td>
<td>0000</td>
<td></td>
</tr>
<tr>
<td>Addr = 0004</td>
<td>Addr = 0008</td>
<td>0001</td>
<td></td>
</tr>
<tr>
<td>Addr = 0008</td>
<td>Addr = 0008</td>
<td>0002</td>
<td></td>
</tr>
<tr>
<td>Addr = 0012</td>
<td></td>
<td>0003</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0004</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0005</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0006</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0007</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0008</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0009</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0010</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0011</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0012</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0013</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0014</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0015</td>
<td></td>
</tr>
</tbody>
</table>
Data Sizes

- Computer and compiler support multiple data formats
 - Using different ways to encode data
 - Integers and floating point
 - Using different lengths
Data Representations

<table>
<thead>
<tr>
<th>C Data Type</th>
<th>Typical 32-bit</th>
<th>Intel IA32</th>
<th>x86-64</th>
</tr>
</thead>
<tbody>
<tr>
<td>char</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>short</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>int</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>long</td>
<td>4</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>long long</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>float</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>double</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>long double</td>
<td>8</td>
<td>10/12</td>
<td>10/16</td>
</tr>
<tr>
<td>pointer</td>
<td>4</td>
<td>4</td>
<td>8</td>
</tr>
</tbody>
</table>
Byte Ordering

► A multi-byte object is stored as a contiguous sequence of bytes
 ○ With an address of the object given by the smallest address of the bytes
► How should bytes within a multi-byte word be ordered in memory?
► Conventions
 ○ Big Endian: Sun, PPC Mac, Internet
 • Least significant byte has highest address
 ○ Little Endian: x86
 • Least significant byte has lowest address
Byte Ordering Example

- **Big Endian**
 - Least significant byte has highest address

- **Little Endian**
 - Least significant byte has lowest address

- **Example**
 - Variable `x` has 4-byte representation `0x01234567`
 - Address given by `&x` is `0x100`

<table>
<thead>
<tr>
<th>Big Endian</th>
<th>0x100</th>
<th>0x101</th>
<th>0x102</th>
<th>0x103</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>01</td>
<td>23</td>
<td>45</td>
<td>67</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Little Endian</th>
<th>0x100</th>
<th>0x101</th>
<th>0x102</th>
<th>0x103</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>67</td>
<td>45</td>
<td>23</td>
<td>01</td>
</tr>
</tbody>
</table>
Reading Byte-Reversed Listings

- **Disassembly**
 - Text representation of binary machine code
 - Generated by program that reads the machine code

- **Example Fragment**

<table>
<thead>
<tr>
<th>Address</th>
<th>Instruction Code</th>
<th>Assembly Rendition</th>
</tr>
</thead>
<tbody>
<tr>
<td>8048365:</td>
<td>5b</td>
<td>pop %ebx</td>
</tr>
<tr>
<td>8048366:</td>
<td>81 c3 ab 12 00 00</td>
<td>add $0x12ab,%ebx</td>
</tr>
<tr>
<td>804836c:</td>
<td>83 bb 28 00 00 00</td>
<td>cmpl $0x0,0x28(%ebx)</td>
</tr>
</tbody>
</table>

- **Deciphering Numbers**
 - Value: 0x12ab
 - Pad to 32 bits: 0x000012ab
 - Split into bytes: 00 00 12 ab
 - Reverse: ab 12 00 00
EXAMINING DATA REPRESENTATIONS

► Code to print byte representation of data
 ○ Textbook Figure 2.4 at page 42
 ○ Casting pointer to unsigned char * creates byte array

```c
typedef unsigned char *pointer;

void show_bytes(pointer start, int len){
  int i;
  for (i = 0; i < len; i++)
    printf("%p \t0x%.2x\n", start+i, start[i]);
  printf("\n");
}
```
```c
int a = 15213;
printf("int a = 15213;\n");
show_bytes((pointer) &a, sizeof(int));
```

Result (Linux):

```
int a = 15213;
0x11ffffffcb8 0x6d
0x11ffffffcb9 0x3b
0x11ffffffcba 0x00
0x11ffffffcbb 0x00
```
Representing Integers

Decimal: 15213
Binary: 0011 1011 0110 1101
Hex: 3 B 6 D

int A = 15213;

int B = -15213;

long int C = 15213;

Two’s complement representation
Different compilers & machines assign different locations to objects
Representing Strings

- **Strings in C**
 - Represented by array of characters
 - Each character encoded in ASCII format
 - Standard 7-bit encoding of character set
 - Character “0” has code \texttt{0x30}
 - Digit \(i\) has code \texttt{0x30+i}
 - String should be null-terminated
 - Final character = 0

- **Compatibility**
 - Byte ordering not an issue

```
char S[6] = "18243";
```
Machine-Level Code Representation

Encode Program as Sequence of Instructions

- Each simple operation
 - Arithmetic operation
 - Read or write memory
 - Conditional branch

- Instructions encoded as bytes
 - Alpha’s, Sun’s, Mac’s use 4 byte instructions
 - Reduced Instruction Set Computer (RISC)
 - PC’s use variable length instructions
 - Complex Instruction Set Computer (CISC)

- Different instruction types and encodings for different machines
 - Most code not binary compatible

Programs are Byte Sequences Too!
Representing Instructions

For this example, Alpha & Sun use two 4-byte instructions

- Use differing numbers of instructions in other cases

PC uses 7 instructions with lengths 1, 2, and 3 bytes

- Same for NT and for Linux
- NT / Linux not fully binary compatible

<table>
<thead>
<tr>
<th>Alpha sum</th>
<th>Sun sum</th>
<th>PC sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>00 00 30 42</td>
<td>81 C3 E0 08</td>
<td>55 89 E5 8B 45</td>
</tr>
<tr>
<td>01 80 FA 6B</td>
<td>90 02 00 09</td>
<td>0C 03 45 08 89</td>
</tr>
</tbody>
</table>

```c
int sum(int x, int y)
{
    return x+y;
}
```

Different machines use totally different instructions and encodings.
Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting

Summary
Boolean Algebra

- Developed by George Boole in 19th Century
 - Algebraic representation of logic
 - Encode “True” as 1 and “False” as 0

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>and A&B = 1 when both A=1 and B=1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>&</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>or A</td>
<td>B = 1 when either A=1 or B=1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>not ~A = 1 when A=0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>~</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>exclusive-or (xor) A^B = 1 when either A=1 or B=1, but not both</td>
<td></td>
<td></td>
</tr>
<tr>
<td>^</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
General Boolean Algebras

- Operate on Bit Vectors
 - Operations applied bitwise

\[
\begin{align*}
 01101001 & \quad 01101001 & \quad 01101001 \\
 \& 01010101 & \mid 01010101 & \wedge 01010101 & \sim 01010101 \\
 01000001 & \quad 01111101 & \quad 00111100 & \quad 10101010
\end{align*}
\]

- All of the Properties of Boolean Algebra Apply
Bit-Level Operations in C

- **Operations &,** `|`, `~`, `^` available in C
 - Apply to any “integral” data type
 - `long, int, short, char, unsigned`
 - View arguments as bit vectors
 - Arguments applied bit-wise

- **Examples (char data type)**
 - `~0x41 ➞ 0xBE`
 - `~010000012 ➞ 101111102`
 - `~0x00 ➞ 0xFF`
 - `~000000002 ➞ 111111112`
 - `0x69 & 0x55 ➞ 0x41`
 - `011010012 & 010101012 ➞ 010000012`
 - `0x69 | 0x55 ➞ 0x7D`
 - `011010012 | 010101012 ➞ 01111012`
Logic Operations in C

- Contrast to Logical Operators
 - &&, ||, !
 - View 0 as "False"
 - Anything nonzero as "True"
 - Always return 0 or 1
 - Early termination

- Examples (char data type)
 - !0x41 → 0x00
 - !0x00 → 0x01
 - !!0x41 → 0x01
 - 0x69 && 0x55 → 0x01
 - 0x69 || 0x55 → 0x01
 - p && *p (avoids null pointer access)
Shift Operations

Left Shift: \(x << y \)
- Shift bit-vector \(x \) left \(y \) positions
 - Throw away extra bits on left
 - Fill with 0’s on right

Right Shift: \(x >> y \)
- Shift bit-vector \(x \) right \(y \) positions
 - Throw away extra bits on right
- Logical shift
 - Fill with 0’s on left
- Arithmetic shift
 - Replicate most significant bit on right

Undefined Behavior
- Shift amount < 0 or ≥ word size

<table>
<thead>
<tr>
<th>Argument (x)</th>
<th>01100010</th>
</tr>
</thead>
<tbody>
<tr>
<td>(<< 3)</td>
<td>00010000</td>
</tr>
<tr>
<td>Log. >> 2</td>
<td>00011000</td>
</tr>
<tr>
<td>Arith. >> 2</td>
<td>00011000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Argument (x)</th>
<th>10100010</th>
</tr>
</thead>
<tbody>
<tr>
<td>(<< 3)</td>
<td>00010000</td>
</tr>
<tr>
<td>Log. >> 2</td>
<td>00101000</td>
</tr>
<tr>
<td>Arith. >> 2</td>
<td>11101000</td>
</tr>
</tbody>
</table>
Cool Stuff with XOR

- Bitwise xor is form of addition
- With extra property that every value is its own additive inverse
 - $A \oplus A = 0$

```c
void funny(int *x, int *y)
{
    *x = *x ^ *y;    /* #1 */
    *y = *x ^ *y;    /* #2 */
    *x = *x ^ *y;    /* #3 */
}
```

<table>
<thead>
<tr>
<th>Begin</th>
<th>*x</th>
<th>*y</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>1</td>
<td>$A \oplus B$</td>
<td>B</td>
</tr>
<tr>
<td>2</td>
<td>$A \oplus B$</td>
<td>$(A \oplus B) \oplus B = A$</td>
</tr>
<tr>
<td>3</td>
<td>$(A \oplus B) \oplus A = B$</td>
<td>A</td>
</tr>
<tr>
<td>End</td>
<td>B</td>
<td>A</td>
</tr>
</tbody>
</table>
Summary

- It’s all about bits & bytes
 - Numbers
 - Programs
 - Text

- Different machines follow different conventions
 - Word size
 - Byte ordering
 - Representations and encoding

- Boolean algebra is mathematical basis
 - Basic form encodes “false” as 0, “true” as 1
 - General form like bit-level operations in C
 - Good for representing & manipulating sets
Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - **Representation: unsigned and signed**
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Summary
Encoding Integers

Unsigned

\[B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i \]

Two’s Complement

\[B2T(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i \]

- C **short 2 bytes long**

- **Sign Bit**
 - For 2’s complement, most significant bit indicates sign
 - 0 for nonnegative
 - 1 for negative

Decimal	Hex	Binary
15213 | 3B 6D | 00111011 01101101
-15213 | C4 93 | 11000100 10010011
Encoding Example

\[x = 15213: 00111011 01101101 \]
\[y = -15213: 11000100 10010011 \]

<table>
<thead>
<tr>
<th>Weight</th>
<th>15213</th>
<th>-15213</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>32</td>
<td>1</td>
<td>16</td>
</tr>
<tr>
<td>64</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>128</td>
<td>0</td>
<td>128</td>
</tr>
<tr>
<td>256</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>512</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1024</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2048</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4096</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>8192</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>16384</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>-32768</td>
<td>0</td>
<td>-1</td>
</tr>
</tbody>
</table>

Sum

<table>
<thead>
<tr>
<th>Sum</th>
<th>15213</th>
<th>-15213</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>15213</td>
<td>-15213</td>
</tr>
</tbody>
</table>
Numeric Ranges

Unsigned Values
- **UMin** = 0
 - 000...0
- **UMax** = $2^w - 1$
 - 111...1

Two’s Complement Values
- **TMin** = -2^{w-1}
 - 100...0
- **TMax** = $2^{w-1} - 1$
 - 011...1

Other Values
- **Minus 1**
 - 111...1

Values for $w = 16$

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>UMax</td>
<td>65535</td>
<td>FF FF</td>
<td>11111111 11111111</td>
</tr>
<tr>
<td>Tmax</td>
<td>32767</td>
<td>7F FF</td>
<td>01111111 11111111</td>
</tr>
<tr>
<td>Tmin</td>
<td>-32768</td>
<td>80 00</td>
<td>10000000 00000000</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
<td>FF FF</td>
<td>11111111 11111111</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>00 00</td>
<td>00000000 00000000</td>
</tr>
</tbody>
</table>
Values for Different Word Sizes

<table>
<thead>
<tr>
<th>W</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
</tr>
</thead>
<tbody>
<tr>
<td>UMax</td>
<td>255</td>
<td>65,535</td>
<td>4,294,967,295</td>
<td>18,446,744,073,709,551,615</td>
</tr>
<tr>
<td>Tmax</td>
<td>127</td>
<td>32,767</td>
<td>2,147,483,647</td>
<td>9,223,372,036,854,775,807</td>
</tr>
<tr>
<td>Tmin</td>
<td>-128</td>
<td>-32,768</td>
<td>-2,147,483,648</td>
<td>-9,223,372,036,854,775,808</td>
</tr>
</tbody>
</table>

- **Observations**
 - $|\text{TMin}| = \text{TMax} + 1$
 - Asymmetric range
 - $\text{UMax} = 2 \times \text{TMax} + 1$

- **C Programming**
 - `#include <limits.h>`
 - Declares constants, e.g.,
 - `ULONG_MAX`
 - `LONG_MAX`
 - `LONG_MIN`
 - Values platform specific
Unsigned & Signed Numeric Values

- **Equivalence**
 - Same encodings for nonnegative values

- **Uniqueness**
 - Every bit pattern represents unique integer value
 - Each representable integer has unique bit encoding

- **Can invert mappings**
 - \(U2B(x) = B2U^{-1}(x) \)
 - Bit pattern for unsigned integer
 - \(T2B(x) = B2T^{-1}(x) \)
 - Bit pattern for two’s comp integer

<table>
<thead>
<tr>
<th>X</th>
<th>B2U (X)</th>
<th>B2T (X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>8</td>
<td>-8</td>
</tr>
<tr>
<td>1001</td>
<td>9</td>
<td>-7</td>
</tr>
<tr>
<td>1010</td>
<td>10</td>
<td>-6</td>
</tr>
<tr>
<td>1011</td>
<td>11</td>
<td>-5</td>
</tr>
<tr>
<td>1100</td>
<td>12</td>
<td>-4</td>
</tr>
<tr>
<td>1101</td>
<td>13</td>
<td>-3</td>
</tr>
<tr>
<td>1110</td>
<td>14</td>
<td>-2</td>
</tr>
<tr>
<td>1111</td>
<td>15</td>
<td>-1</td>
</tr>
</tbody>
</table>
Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Summary
Mappings between unsigned and two’s complement numbers:

- Keep bit representations and reinterpret
Mapping Signed ↔ Unsigned

<table>
<thead>
<tr>
<th>Bits</th>
<th>Signed</th>
<th>Unsigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>-8</td>
<td>8</td>
</tr>
<tr>
<td>1001</td>
<td>-7</td>
<td>9</td>
</tr>
<tr>
<td>1010</td>
<td>-6</td>
<td>10</td>
</tr>
<tr>
<td>1011</td>
<td>-5</td>
<td>11</td>
</tr>
<tr>
<td>1100</td>
<td>-4</td>
<td>12</td>
</tr>
<tr>
<td>1101</td>
<td>-3</td>
<td>13</td>
</tr>
<tr>
<td>1110</td>
<td>-2</td>
<td>14</td>
</tr>
<tr>
<td>1111</td>
<td>-1</td>
<td>15</td>
</tr>
</tbody>
</table>

- **T2U**: Signed to Unsigned
- **U2T**: Unsigned to Signed
Mapping Signed ↔ Unsigned

<table>
<thead>
<tr>
<th>Bits</th>
<th>Signed</th>
<th>Unsigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>-8</td>
<td>8</td>
</tr>
<tr>
<td>1001</td>
<td>-7</td>
<td>9</td>
</tr>
<tr>
<td>1010</td>
<td>-6</td>
<td>10</td>
</tr>
<tr>
<td>1011</td>
<td>-5</td>
<td>11</td>
</tr>
<tr>
<td>1100</td>
<td>-4</td>
<td>12</td>
</tr>
<tr>
<td>1101</td>
<td>-3</td>
<td>13</td>
</tr>
<tr>
<td>1110</td>
<td>-2</td>
<td>14</td>
</tr>
<tr>
<td>1111</td>
<td>-1</td>
<td>15</td>
</tr>
</tbody>
</table>
Relation between Signed & Unsigned

Two’s Complement → T2U → T2B → B2U → Unsigned

$ux = \begin{cases}
 x & x \geq 0 \\
 x + 2^w & x < 0
\end{cases}$

- Large negative weight becomes Large positive weight
2’s Comp. → Unsigned
- Ordering Inversion
- Negative → Big Positive

2’s Complement Range

Unsigned Range

UMax
UMax - 1
TMax + 1
TMax

TMin

0
-1
-2
0
Signed vs. Unsigned in C

- **Constants**
 - By default are considered to be signed integers
 - Unsigned if have “U” as suffix
 - 0U, 4294967259U

- **Casting**
 - Explicit casting between signed & unsigned same as U2T and T2U
 - int tx, ty;
 - unsigned ux, uy;
 - tx = (int) ux;
 - uy = (unsigned) ty;
 - Implicit casting also occurs via assignments and procedure calls
 - tx = ux;
 - uy = ty;
Casting Surprises

Expression Evaluation

- If there is a mix of unsigned and signed in single expression
 - Signed values implicitly cast to unsigned
- Including comparison operations <, >, ==, <=, >=
- Example \(w = 32; \text{TMIN} = -2,147,483,648; \text{TMAX} = 2,147,483,647 \)

<table>
<thead>
<tr>
<th>Constant(_1)</th>
<th>Constant(_2)</th>
<th>Relation</th>
<th>Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0U</td>
<td>==</td>
<td>unsigned</td>
</tr>
<tr>
<td>-1</td>
<td>0</td>
<td><</td>
<td>signed</td>
</tr>
<tr>
<td>-1</td>
<td>0U</td>
<td>></td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>-2147483648</td>
<td>></td>
<td>signed</td>
</tr>
<tr>
<td>2147483647U</td>
<td>2147483648</td>
<td><</td>
<td>unsigned</td>
</tr>
<tr>
<td>-1</td>
<td>-2</td>
<td>></td>
<td>signed</td>
</tr>
<tr>
<td>(unsigned) -1</td>
<td>-2</td>
<td>></td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>2147483648U</td>
<td><</td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>(int) 2147483648U</td>
<td>></td>
<td>signed</td>
</tr>
</tbody>
</table>
Casting Basic Rules

- Bit pattern is maintained
 - But reinterpreted
- Can have unexpected effects: adding or subtracting 2^w
- Expression containing signed and unsigned int
 - int is cast to unsigned!!
Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Summary
Sign Extension

- Task:
 - Given w-bit signed integer x
 - Convert it to $w+k$-bit integer with same value

- Rule:
 - Make k copies of sign bit:
 - $X = x_{w-1},..., x_{w-1}, x_{w-1}, x_{w-2},..., x_0$

![Diagram showing sign extension process](image)
Sign Extension Example

- Converting from smaller to larger integer data type
- C automatically performs sign extension

```c
short int x = 15213;
int ix = (int) x;
short int y = -15213;
int iy = (int) y;
```

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>15123</td>
<td>3B 6D</td>
<td>00111011 01101101</td>
</tr>
<tr>
<td>ix</td>
<td>15123</td>
<td>00 00 3B 6D</td>
<td>00000000 00000000 00111011 01101101</td>
</tr>
<tr>
<td>y</td>
<td>-15123</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
<tr>
<td>iy</td>
<td>-15123</td>
<td>FF FF C4 93</td>
<td>11111111 11111111 11000100 10010011</td>
</tr>
</tbody>
</table>
Prove correctness by induction on k

- Induction step
 - Extending by single bit maintains value

Key observation: $-2^w = -2^{w+1} + 2^w$
Truncating Numbers

Truncating a number can alter its value
 ▶ A form of overflow

For an unsigned number of \(x \)
 ▶ Result of truncating it to \(k \) bits is equivalent to computing \(x \mod 2^k \)

```c
int x = 50323;
short int ux = (short) x;  // -15213
int y = sx;                // -15213
```

\[
\begin{align*}
 B2U_k([x_k, x_{k-1}, \ldots, x_0]) &= B2U_w([x_w, x_{w-1}, \ldots, x_0]) \mod 2^k \\
 B2T_k([x_k, x_{k-1}, \ldots, x_0]) &= U2T_k(B2U_w([x_w, x_{w-1}, \ldots, x_0]) \mod 2^k)
\end{align*}
\]
EXPANDING, TRUNCATING: BASIC RULES

▶ Expanding (e.g., short int to int)
 ○ Unsigned: zeros added
 ○ Signed: sign extension
 ○ Both yield expected result

▶ Truncating (e.g., unsigned to unsigned short)
 ○ Unsigned/signed: bits are truncated
 ○ Result reinterpreted
 ○ Unsigned: mod operation
 ○ Signed: similar to mod
 ○ For small numbers yields expected behavior
Advice on Singed and Unsigned

- Implicit conversion of singed to unsigned
 - Can lead to error or vulnerabilities

- Never use unsigned numbers
 - Java supports only signed integers
 - >> : arithmetic shift
 - >>> : logical shift
Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Summary
Negation: Complement & Increment

- **Claim:** following holds for 2’s complement
 \[\sim x + 1 = -x \]

- **Complement**
 - Observation: \[\sim x + x = \underbrace{111\ldots111}_2 = -1 \]

 \[
 \begin{array}{c}
 x \hspace{1cm} 10011101 \\
 + \sim x \hspace{1cm} 01100010 \\
 \hline
 \text{-1} \hspace{1cm} 11111111
 \end{array}
 \]

- **Increment**
 \[\sim x + x + (-x + 1) = -1 + (-x + 1) \]
 \[\sim x + 1 = -x\]

- **Warning:** Be cautious treating int’s as integers
 - OK next page but \([1,1, \ldots, 1]\) or \([0,1,\ldots,1]\)
Complement & Increment Examples

$x = 15213$

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>15213</td>
<td>3B 6D</td>
<td>00111011 01101101</td>
</tr>
<tr>
<td>$\sim x$</td>
<td>-15214</td>
<td>C4 92</td>
<td>11000100 10010010</td>
</tr>
<tr>
<td>$\sim x+1$</td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
<tr>
<td>y</td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
</tbody>
</table>

$x = 0$

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>00 00</td>
<td>00000000 00000000</td>
</tr>
<tr>
<td>~ 0</td>
<td>-1</td>
<td>FF FF</td>
<td>11111111 11111111</td>
</tr>
<tr>
<td>$\sim 0+1$</td>
<td>0</td>
<td>00 00</td>
<td>00000000 00000000</td>
</tr>
</tbody>
</table>
Unsigned Addition

<table>
<thead>
<tr>
<th>Operands: w bits</th>
<th>u</th>
<th>+</th>
<th>v</th>
<th>True Sum: $w+1$ bits</th>
<th>$u + v$</th>
<th>Discard Carry: w bits</th>
<th>$UAdd_w(u, v)$</th>
</tr>
</thead>
</table>

- **Standard addition function**
 - Ignores CARRY output
- **Implements modular arithmetic**
 $$s = UAdd_w(u, v) = u + v \mod 2^w$$

$$UAdd_w(u, v) = \begin{cases}
 u + v & u + v < 2^w \\
 u + v - 2^w & u + v \geq 2^w
\end{cases}$$
4-bit integers u, v

Compute true sum $\text{Add}_4(u, v)$

Values increase linearly with u and v

Forms planar surface
Visualizing Unsigned Addition

- Wraps Around
 - If true sum $\geq 2^w$
 - At most once

True Sum

- 2^{w+1}
- 2^w
- 0

Modular Sum

- Overflow

- UAdd$_4(u,v)$

Overflow
Mathematical Properties of \textbf{UAdd}

- Modular Addition Forms an \textit{Abelian Group}
 - \textbf{Closed} under addition
 \[0 \leq \text{UAdd}_w(u,v) \leq 2^w - 1 \]
 - \textbf{Commutative}
 \[\text{UAdd}_w(u,v) = \text{UAdd}_w(v,u) \]
 - \textbf{Associative}
 \[\text{UAdd}_w(t,\text{UAdd}_w(u,v)) = \text{UAdd}_w(\text{UAdd}_w(t,u),v) \]
 - \textbf{0} is additive identity
 \[\text{UAdd}_w(u,0) = u \]
 - Every element has additive \textbf{inverse}
 - Let
 \[\text{UComp}_w(u) = 2^w - u \]
 \[\text{UAdd}_w(u,\text{UComp}_w(u)) = 0 \]
Two's Complement Addition

<table>
<thead>
<tr>
<th>Operands: (w) bits</th>
<th>(u)</th>
<th>+</th>
<th>(v)</th>
<th>(u + v)</th>
</tr>
</thead>
<tbody>
<tr>
<td>True Sum: (w+1) bits</td>
<td>(u + v)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discard Carry: (w) bits</td>
<td>(\text{TAdd}_w(u, v))</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **TAdd and UAdd** have identical bit-level behavior
 - Signed vs. unsigned addition in C:
    ```
    int s, t, u, v;
    s = (int)((unsigned)u + (unsigned)v);
    t = u + v
    ```
 - Will give \(s == t \)
- **TAdd Overflow** -

- True sum requires $w+1$ bits
- Drop off MSB
- Treat remaining bits as 2’s complement integer
Visualizing 2’s Complement Addition

- Values
 - 4-bit two’s comp.
 - Range from -8 to +7

- Wraps around
 - If sum $\geq 2^{w-1}$
 - Becomes negative
 - At most once
 - If sum $< -2^{w-1}$
 - Becomes positive
 - At most once
Characterizing TAdd

Functionality

- True sum requires $w+1$ bits
- Drop off MSB
- Treat remaining bits as 2’s complement integer

$$TAdd_w(u, v) = \begin{cases}
 u + v + 2^w, & u + v < T \min_w \\
 u + v, & T \min_w \leq u + v \leq T \max_w \\
 u + v - 2^w, & T \max_w \leq u + v
\end{cases}$$

- Positive Overflow
- Negative Overflow
Mathematical Properties of TAdd

- Isomorphism to unsigneds with UAdd
 \[TAdd_w(u,v) = U2T(UAdd_w(T2U(u),T2U(v))) \]
 - Since both have identical bit patterns

- Two's complement under TAdd forms a group
 - Closed, Commutative, Associative, 0 is additive identity
 - Every element has additive inverse
 - Let
 \[TComp_w(u) = U2T(UComp_w(T2U(u))) \]
 \[TAdd_w(u,TComp_w(u)) = 0 \]

\[
TComp_w(u) = \begin{cases}
-u & u \neq TMin_w \\
TMin_w & u = TMin_w
\end{cases}
\]
Multiplication

- Computing exact product of w-bit numbers x, y
 - Either signed or unsigned

- Ranges
 - Unsigned: $0 \leq x \times y \leq (2^w - 1)^2 = 2^{2w} - 2^{w+1} + 1$
 - Up to $2w$ bits
 - Two’s complement min: $x \times y \geq (-2^w-1) \times (2^{w-1}-1) = -2^{2w-2} + 2^{w-1}$
 - Up to $2w-1$ bits
 - Two’s complement max: $x \times y \leq (-2^{w-1})^2 = 2^{2w-2}$
 - Up to $2w$ bits, but only for $(TMin_w)^2$

- Maintaining exact results
 - Would need to keep expanding word size with each product computed
 - Done in software by “arbitrary precision” arithmetic packages
Unsigned Multiplication in C

<table>
<thead>
<tr>
<th></th>
<th>Operands: (w) bits</th>
<th>True Product: (2^w) bits</th>
<th>Discard: (w) bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>(u \cdot v)</td>
<td>(u \cdot v) mod (2^w)</td>
<td>(u \cdot v) mod (2^w)</td>
<td>(u \cdot v) mod (2^w)</td>
</tr>
</tbody>
</table>

- **Standard multiplication function**
 - Ignores high order \(w \) bits
- **Implements modular arithmetic**
 - \(\text{UMult}_w(u, v) = u \cdot v \mod 2^w \)
Code Security Example #2

- SUN XDR library
 - Widely used library for transferring data between machines

```c
void* copy_elements(void *ele_src[], int ele_cnt, size_t ele_size);
```

```c
malloc(ele_cnt*ele_size)
```
void* copy_elements(void *ele_src[], int ele_cnt, size_t ele_size) {
 /*
 * Allocate buffer for ele_cnt objects, each of ele_size bytes
 * and copy from locations designated by ele_src
 */
 void *result = malloc(ele_cnt * ele_size);
 if (result == NULL)
 /* malloc failed */
 return NULL;
 void *next = result;
 int i;
 for (i = 0; i < ele_cnt; i++) {
 /* Copy object i to destination */
 memcpy(next, ele_src[i], ele_size);
 /* Move pointer to next memory region */
 next += ele_size;
 }
 return result;
}
XDR Vulnerability

What if:
- `ele_cnt = 2^{20+1}
- `ele_size = 4096
- Allocation = ??

How can I make this function secure?

```c
malloc(ele_cnt * ele_size)
```
Signed Multiplication in C

<table>
<thead>
<tr>
<th>Operands: (w) bits</th>
<th>(u)</th>
<th>(\cdot v)</th>
<th>(\cdot v)</th>
<th>(u \cdot v)</th>
<th>True Product: (2^w) bits</th>
<th>(T\text{Mult}_w(u, v))</th>
<th>Discard: (w) bits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Standard Multiplication Function
 - Ignores high order \(w \) bits
 - Some of which are different for signed vs. unsigned multiplication
 - Lower bits are the same
UNSIGNED VS. SIGNED MULTIPLICATION

- **Unsigned multiplication**

  ```c
  unsigned ux = (unsigned) x;
  unsigned uy = (unsigned) y;
  unsigned up = ux * uy
  ```

 - Truncates product to \(w\)-bit number
    ```c
    up = UMultw(ux, uy)
    ```

 - Modular arithmetic
    ```c
    up = ux * uy \mod 2^w
    ```

- **Two’s Complement Multiplication**

  ```c
  int x, y;
  int p = x * y;
  ```

 - Compute exact product of two \(w\)-bit numbers \(x, y\)
    ```c
    ```

 - Truncate result to \(w\)-bit number \(p = TMultw(x, y)\)
Power-of-2 Multiply with Shift

Operation
- $u \ll k$ gives $u \times 2^k$
- Both signed and unsigned

<table>
<thead>
<tr>
<th>Operands: w bits</th>
<th>$u \cdot 2^k$</th>
<th>Discard k bits: w bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>u</td>
<td>2^k</td>
<td>$u , UMult_w(u, , 2^k)$</td>
</tr>
<tr>
<td>k</td>
<td></td>
<td>$u , TMult_w(u, , 2^k)$</td>
</tr>
<tr>
<td>w</td>
<td>$w+k$</td>
<td>w bits</td>
</tr>
</tbody>
</table>

Examples
- $u \ll 3 == u \times 8$
- $u \ll 5 - u \ll 3 == u \times 24$
- Most machines shift and add faster than multiply
 - Compiler generates this code automatically
C compiler automatically generates shift/add code when multiplying by constant.

C Function

```c
int mul12(int x)
{
    return x*12;
}
```

Compiled Arithmetic Operations

```
lea (%eax,%eax,2), %eax
sll $2, %eax
```

Explanation

```
t <- x+x*2
return t << 2;
```
Unsigned Power-of-2 Divide with Shift

- Quotient of unsigned by power of 2
 - \(u \gg k \) gives \(\lfloor u / 2^k \rfloor \)
 - Uses logical shift

![Division Diagram]

<table>
<thead>
<tr>
<th>Division</th>
<th>Computed</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>15213</td>
<td>15213</td>
<td>3B 6D 00111011 01101101</td>
</tr>
<tr>
<td>x >> 1</td>
<td>7606.5</td>
<td>7606</td>
<td>1D B6 00011101 10110110</td>
</tr>
<tr>
<td>x >> 4</td>
<td>950.8125</td>
<td>950</td>
<td>03 B6 00000011 10110110</td>
</tr>
<tr>
<td>x >> 8</td>
<td>59.4257813</td>
<td>59</td>
<td>00 3B 00000000 00111011</td>
</tr>
</tbody>
</table>
C Function

```c
unsigned udiv8(unsigned x)
{
    return x/8;
}
```

Compiled Arithmetic Operations

```c
shrl $3, %eax
```

Explanation

```c
# Logical shift
return x >> 3;
```

- Uses logical shift for unsigned
- For Java Users
 - Logical shift written as `>>>`
Signed Power-of-2 Divide with Shift

- Quotient of Signed by Power of 2
 - $x \gg k$ gives $\lfloor x / 2^k \rfloor$
 - Uses arithmetic shift
 - Rounds wrong direction when $u < 0$

<table>
<thead>
<tr>
<th>Operands:</th>
<th>x / 2^k</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>...0100...00</td>
</tr>
<tr>
<td>2^k</td>
<td>0...010...00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Division:</th>
<th>$x / 2^k$</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>...011...11</td>
</tr>
<tr>
<td>2^k</td>
<td>0...010...00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Result:</th>
<th>$\text{RoundDown}(x / 2^k)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>...011...11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Division</th>
<th>Computed</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>-15213</td>
<td>-15213</td>
<td>C4 93 11000100 10010011</td>
</tr>
<tr>
<td>$y \gg 1$</td>
<td>-7606.5</td>
<td>-7607</td>
<td>E2 49 11100001 01001001</td>
</tr>
<tr>
<td>$y \gg 4$</td>
<td>-950.8125</td>
<td>-951</td>
<td>FC 49 11111100 01001001</td>
</tr>
<tr>
<td>$y \gg 8$</td>
<td>-59.4257813</td>
<td>-60</td>
<td>FF C4 11111111 11000100</td>
</tr>
</tbody>
</table>
Correct Power-of-2 Divide

▶ Quotient of Negative Number by Power of 2

- Want \(\lfloor x / 2^k \rfloor \) (Round Toward 0)
- \(\lfloor x / y \rfloor = \lfloor (x + y - 1)/y \rfloor \)
- \(\lfloor x / 2^k \rfloor = \lfloor (x + 2^k - 1)/2^k \rfloor \)
- Compute as \(\lfloor (x + 2^k - 1)/2^k \rfloor \)
 - In C: \((x + (1<<k)-1) >> k\)
 - Biases dividend toward 0

▶ Case 1: No rounding

<table>
<thead>
<tr>
<th>Bias:</th>
<th>Dividend:</th>
<th>Divisor:</th>
<th>Quotient:</th>
</tr>
</thead>
<tbody>
<tr>
<td>+2^k - 1</td>
<td>1 \cdots 1</td>
<td>1 \cdots 1 ; / ; 2^k</td>
<td>1 \cdots 1</td>
</tr>
</tbody>
</table>

Biasing has no effect
Correct Power-of-2 Divide (Cont.)

- **Case 2: Rounding**

<table>
<thead>
<tr>
<th>Dividend:</th>
<th>$x + 2^k - 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>1 ... 0 0 1 ... 1 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Divisor:</th>
<th>2^k</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x / 2^k$</td>
<td>1 ... 0 1 0 ... 0 0</td>
</tr>
</tbody>
</table>

Biasing adds 1 to final result
Compiled Signed Division Code

C Function

```c
int idiv8(int x) {
    return x/8;
}
```

Compiled Arithmetic Operations

```assembly
testl %eax, %eax
js L4
L3:
sarl $3, %eax
ret
L4:
addl $7, %eax
jmp L3
```

Explanation

- Uses arithmetic shift for `int`
- For Java Users
 - Arithmetic shift written as `>>`

```c
if x < 0
    x += 7;
# Arithmetic shift
return x >> 3;
```
Arithmetic: Basic Rules

- **Addition:**
 - Unsigned/signed: Normal addition followed by truncate, same operation on bit level
 - Unsigned: addition $\text{mod } 2^w$
 - Mathematical addition + possible subtraction of 2^w
 - Signed: modified addition $\text{mod } 2^w$ (result in proper range)
 - Mathematical addition + possible addition or subtraction of 2^w

- **Multiplication:**
 - Unsigned/signed: Normal multiplication followed by truncate, same operation on bit level
 - Unsigned: multiplication $\text{mod } 2^w$
 - Signed: modified multiplication $\text{mod } 2^w$ (result in proper range)
Unsigned ints, 2’s complement ints are isomorphic rings: isomorphism = casting

Left shift
- Unsigned/singed: multiplication by 2^k
- Always logical shift

Right shift
- Unsigned: logical shift, div (division + round to zero) by 2^k
- Signed: arithmetic shift
 - Positive numbers: div (division + round to zero) by 2^k
 - Negative numbers: div (division + round away from zero) by 2^k
 Use biasing to fix
TODAY: INTEGERS

- Representation: unsigned and signed
- Conversion, casting
- Expanding, truncating
- Addition, negation, multiplication, shifting
- Summary
Properties of Unsigned Arithmetic

 Unsigned multiplication with addition forms commutative ring

- Addition is commutative group
- Closed under multiplication
 \[0 \leq \text{UMult}_w(u,v) \leq 2^w - 1 \]
- Multiplication Commutative
 \[\text{UMult}_w(u,v) = \text{UMult}_w(v,u) \]
- Multiplication is Associative
 \[\text{UMult}_w(t,\text{UMult}_w(u,v)) = \text{UMult}_w(\text{UMult}_w(t,u),v) \]
- 1 is multiplicative identity
 \[\text{UMult}_w(u,1) = u \]
- Multiplication distributes over addition
 \[\text{UMult}_w(t,\text{UAdd}_w(u,v)) = \text{UAdd}_w(\text{UMult}_w(t,u),\text{UMult}_w(t,v)) \]
Properties of Two’s Comp. Arithmetic

- Isomorphic algebras
 - Unsigned multiplication and addition
 • Truncating to \(w \) bits
 - Two’s complement multiplication and addition
 • Truncating to \(w \) bits

- Both form rings
 - Isomorphic to ring of integers \(\mod 2^w \)

- Comparison to (mathematical) integer arithmetic
 - Both are rings
 - Integers obey ordering properties, e.g.,
 \[
 \begin{align*}
 u > 0 & \implies u + v > v \\
 u > 0, \ v > 0 & \implies u \cdot v > 0
 \end{align*}
 \]
 - These properties are not obeyed by two’s comp. arithmetic
 \[
 \begin{align*}
 T_{\text{Max}} + 1 & \equiv T_{\text{Min}} \\
 15213 \times 30426 & \equiv -10030 \quad \text{(16-bit words)}
 \end{align*}
 \]
Why Should I Use Unsigned?

- Practice Problem 2.23
- **Don’t** use just because number nonnegative
 - Easy to make mistakes
    ```c
    unsigned i;
    for (i = cnt-2; i >= 0; i--)
        a[i] += a[i+1];
    ```
 - Can be very subtle
    ```c
    #define DELTA sizeof(int)
    int i;
    for (i = CNT; i-DELTA >= 0; i-= DELTA)
    ```
- **Do** use when performing modular arithmetic
 - Multiprecision arithmetic
- **Do** use when using bits to represent sets
 - Logical right shift, no sign extension
Integer C Puzzles

- $x < 0 \implies ((x*2) < 0)$
- $ux >= 0$
- $x & 7 == 7 \implies (x<<30) < 0$
- $ux > -1$
- $x > y \implies -x < -y$
- $x * x >= 0$
- $x > 0 && y > 0 \implies x + y > 0$
- $x >= 0 \implies -x <= 0$
- $x <= 0 \implies -x >= 0$
- $(x|\neg x)>>31 == -1$
- $ux >> 3 == ux/8$
- $x >> 3 == x/8$
- $x & (x-1) != 0$

Initialization

```c
int x = foo();
int y = bar();
unsigned ux = x;
unsigned uy = y;
```