CSE3008: Operating Systems

Jin-Soo Kim (jinsookim@skku.edu)
Computer Systems Laboratory
Sungkyunkwan University
http://csl.skku.edu
Introduction

- **Schedule**
 - 13:30 – 14:45 (Mon), 16:30 – 17:45 (Wed)
 - Lecture room #330110 (Semiconductor Bldg.)

- **Instructor**
 - Jin-Soo Kim (jinsookim@skku.edu)
 - Computer Systems Laboratory (http://csl.skku.edu)
 - Office: Semiconductor Bldg. #400630 (6th floor)
 - Tel: 031-299-4593
 - The best way to contact me is via email.
Computer Systems Track

CSE2003: System Programming

ICE2001: Data Structures

GEDD007: Logic Circuits

Advanced / Interdisciplinary

ICE3026: Embedded Systems

ICE3028: Embedded System Design

CSE3007: Database

ICE3008: Operating Systems

ICE3003: Computer Architecture

ICE3024: Digital Systems

ICE3026: Computer Networks

CSE2039: Programming Languages

ICE2003: System Programming

Core

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinookim@skku.edu)

Fundamental

= Introduction to Computer Systems
What is OS?

- Computer systems internals

Software

Application

Operating Systems

Architecture

Hardware

CPU

Mem

I/O Devices
Why do we learn OS?

- To graduate

- To make a better OS or system.
 - Functionality
 - Performance/Cost
 - Reliability
 - Energy efficiency

- To make a new hardware up and running.
- To design OS-aware hardware.
- To understand computer systems better.
- Just for fun!
Topics

- Operating system structure overview
- Processes and threads
- CPU scheduling
- Synchronization
- Deadlocks
- Memory management
- Virtual memory
- Storage and I/O systems
- File systems
- Security
Prerequisites

- Prerequisites
 - CSE2003 (System Programming): Must!
 - ICE3003 (Computer Architecture): Recommended

- You should be familiar with the followings:
 - Basic computer organization
 - Process/thread concepts
 - How to write multi-process/multi-threaded programs
 - How to read from/write to files or networks
 - Shells and basic Unix/Linux commands
 - C programming skills
Course Plan

- Lectures
 - General operating system concepts
 - Case studies
 - Linux
 - Microsoft Windows
 - Solaris

- Hands-on projects
 - Will be announced later

- Course Homepage
 - http://csl.skku.edu/CSE3008F09/Overview
Textbook

- Operating System Principles
 - Avi Silberschatz, Peter B. Galvin, and Greg Gagne,
 8th Edition,
 John Wiley & Sons, Inc.
 2008.
References (1)

- For General Operating System Concepts:
 - Modern Operating Systems
 (Second Edition)
References (2)

- For Linux:
 - Understanding the Linux Kernel
 (Third Edition)
 D. Bovet and M. Cesati,
References (3)

- For Windows:
 - Windows Internals
 (Fifth Edition)
 Mark E. Russinovich and
 David A. Solomon,
References (4)

- For Solaris:
 - Solaris Internals
 Richard McDougall and Jim Mauro,
References (5)

- For Introduction to Computer Systems:
 - Computer Systems: A Programmer’s Perspective
 Randal E. Bryant and David R. O’Hallaron,
Class Policies (1)

- **Grading Policy (subject to change)**
 - Midterm exam: 30%
 - Final exam: 30%
 - Projects: 30%
 - Class attendance: 10%
Class Policies (2)

- **Grading**
 - If you miss one or both of exams, you will fail this course.
 - Do not be late! You should be present when I take class attendance.
 - You have four “tokens”; these tokens can be used for unexcused absences and for excused absences as well.
Academic Integrity

- Cheating
 - What is cheating?
 - Sharing code: either by copying, retyping, looking at, or supplying a copy of a file.
 - What is NOT cheating?
 - Helping others use systems or tools.
 - Helping others with high-level design issues.
 - Helping others debug their code.
 - Penalty for cheating:
 - Anyone who involved in cheating will fail this course and get disciplinary actions from the University.
 - Ask helps to me or TAs if you experience any difficulty!
Questions?