
M M tM M tMemory ManagementMemory Management

Jin-Soo Kim (jinsookim@skku.edu)Jin Soo Kim (jinsookim@skku.edu)
Computer Systems Laboratory

Sungkyunkwan University
htt // l kk dhttp://csl.skku.edu

Today’s TopicsToday’s TopicsToday s TopicsToday s Topics
Why is memory management difficult?y y g

Old memory management techniques:Old memory management techniques:
• Fixed partitions

Variable partitions• Variable partitions
• Overlays

S i• Swapping

2CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

Memory Management (1)Memory Management (1)Memory Management (1)Memory Management (1)
Goals
• To provide a convenient abstraction for programming.

• To allocate scarce memory resources among
competing processes to maximize performance with

i i l h dminimal overhead.

T id i l ti b t• To provide isolation between processes.

Wh i i diffi l ?Why is it so difficult?

3CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

Single/Batch ProgrammingSingle/Batch ProgrammingSingle/Batch ProgrammingSingle/Batch Programming
An OS with one user processp
• Programs use physical addresses directly.
• OS loads job, runs it, unloads it.j , ,

0xFFFF..
Operating System

in ROM

Device Drivers
in ROM

User
Program

in ROM

User

User
P

User
Program

Operating System
i RAM

Program

Operating System
i RAM

4CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

in RAM
0

in RAM

MultiprogrammingMultiprogrammingMultiprogrammingMultiprogramming
Multiprogrammingp g g
• Need multiple processes in memory at once.

– To overlap I/O and CPU of multiple jobs
– Each process requires variable-sized and contiguous space.

• Requirements
– Protection: restrict which addresses processes can use.
– Fast translation: memory lookups must be fast, in spite of

protection schemeprotection scheme.
– Fast context switching: updating memory hardware (for

protection and translation) should be quick.

5CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

Fixed Partitions (1)Fixed Partitions (1)Fixed Partitions (1)Fixed Partitions (1)

Partition 4
0 5000

Partition 3
0x5000

0x40000x2000

Base register

i i

Partition 2
0x3000

0x2000

Virtual address
0x2362

Partition 0

Partition 1
0x2000

0x0362 ++
0x2362

Operating
System

Partition 0
0x1000

0

6CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

System 0

Fixed Partitions (2)Fixed Partitions (2)Fixed Partitions (2)Fixed Partitions (2)
Physical memory is broken up into fixed partitions
• Size of each partition is the same and fixed
• the number of partitions = degree of multiprogramming
• Hardware requirements: base register• Hardware requirements: base register

– Physical address = virtual address + base register
– Base register loaded by OS when it switches to a process

Advantages
• Easy to implement, fast context switch

Problems
• Internal fragmentation: memory in a partition not used by a

i il bl hprocess is not available to other processes
• Partition size: one size does not fit all

– Fragmentation vs. fitting large programs

7CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

Fragmentation vs. fitting large programs

Fixed Partitions (3)Fixed Partitions (3)Fixed Partitions (3)Fixed Partitions (3)
Improvement
• Partition size need not be equal.
• Allocation strategies

P titi 4– Maintain a separate queue for each
partition size

– Maintain a single queue and allocate

Partition 4

0x8000g q
to the closest job whose size fits in
an empty partition (first fit)

– Search the whole input queue and

Partition 2

0x4000p q
pick the largest job that fits in an
empty partition (best fit)

• IBM OS/MFT P titi 0

Partition 1
0x2000

0x4000

• IBM OS/MFT
(Multiprogramming with a Fixed
number of Tasks)

Operating
System

Partition 0
0x1000

0

8CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

System 0

Variable Partitions (1)Variable Partitions (1)Variable Partitions (1)Variable Partitions (1)

Partition 3Base registerLimit register

P1’s Base

g

P1’s Limit

g

i i

Partition 2
Virtual address Yes

P i i 0

Partition 1offset ++<?
Yes

No

Operating
System

Partition 0

protection fault

9CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

System

Variable Partitions (2)Variable Partitions (2)Variable Partitions (2)Variable Partitions (2)
Physical memory is broken up into variable-sized
partitions
• IBM OS/MVT

H d i t b i t d li it i t• Hardware requirements: base register and limit register
– Physical address = virtual address + base register
– Base register loaded by OS when it switches to a processg y p

• The role of limit register: protection
– If (physical address > base + limit), then raise a protection fault.

Allocation strategies
• First fit: Allocate the first hole that is big enough• First fit: Allocate the first hole that is big enough
• Best fit: Allocate the smallest hole that is big enough
• Worst fit: Allocate the largest hole

10CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

Variable Partitions (3)Variable Partitions (3)Variable Partitions (3)Variable Partitions (3)
Advantages
• No internal fragmentation

– Simply allocate partition size to be just big enough for process
But if we break the physical memory into fixed sized blocks and– But, if we break the physical memory into fixed-sized blocks and
allocate memory in unit of block sizes (in order to reduce
bookkeeping), we have internal fragmentation.

Problems
• External fragmentationExternal fragmentation

– As we load and unload jobs, holes are left scattered throughout
physical memory

S l ti t t l f t ti• Solutions to external fragmentation:
– Compaction
– Paging and segmentation

11CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

g g g

Overlays (1)Overlays (1)Overlays (1)Overlays (1)
Overlays for a two-pass assemblery p

12CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

Overlays (2)Overlays (2)Overlays (2)Overlays (2)
Overlays
• Keep in memory only those instructions and data

that are needed at any given time.
N ll i l t d b• Normally implemented by user

Advantagesg
• Needed when a process is larger than the amount of

memory allocated to it.
• No special support needed from operating system.

ProblemsProblems
• Programming design of overlay structure is complex.

13CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

Swapping (1)Swapping (1)Swapping (1)Swapping (1)

14CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

Swapping (2)Swapping (2)Swapping (2)Swapping (2)
Swapping
• A process can be swapped temporarily out of

memory to a backing store and then brought back
into memory later for continued executioninto memory later for continued execution.

• Backing store
– Fast disk large enough to accommodate copies of allFast disk large enough to accommodate copies of all

memory images for all users
– Must provide direct access to these memory images

Major part of swap time is transfer time• Major part of swap time is transfer time.
– Directly proportional to the amount of memory swapped.

• Swapping a process with a pending I/OSwapping a process with a pending I/O
– Do not swap a process with pending I/O
– Execute I/O operations only into OS buffers

15CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

