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Today’s TopicsToday’s TopicsToday s TopicsToday s Topics
Why is memory management difficult?y y g

Old memory management techniques:Old memory management techniques:
• Fixed partitions

Variable partitions• Variable partitions
• Overlays

S i• Swapping
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Memory Management (1)Memory Management (1)Memory Management (1)Memory Management (1)
Goals
• To provide a convenient abstraction for programming.

• To allocate scarce memory resources among 
competing processes to maximize performance with 

i i l h dminimal overhead.

T id i l ti b t• To provide isolation between processes.

Wh i i diffi l ?Why is it so difficult?
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Single/Batch ProgrammingSingle/Batch ProgrammingSingle/Batch ProgrammingSingle/Batch Programming
An OS with one user processp
• Programs use physical addresses directly.
• OS loads job, runs it, unloads it.j , ,
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MultiprogrammingMultiprogrammingMultiprogrammingMultiprogramming
Multiprogrammingp g g
• Need multiple processes in memory at once.

– To overlap I/O and CPU of multiple jobs
– Each process requires variable-sized and contiguous space.

• Requirements
– Protection: restrict which addresses processes can use.
– Fast translation: memory lookups must be fast, in spite of 

protection schemeprotection scheme.
– Fast context switching: updating memory hardware (for 

protection and translation) should be quick.
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Fixed Partitions (1)Fixed Partitions (1)Fixed Partitions (1)Fixed Partitions (1)
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Fixed Partitions (2)Fixed Partitions (2)Fixed Partitions (2)Fixed Partitions (2)
Physical memory is broken up into fixed partitions
• Size of each partition is the same and fixed
• the number of partitions = degree of multiprogramming
• Hardware requirements: base register• Hardware requirements: base register

– Physical address = virtual address + base register
– Base register loaded by OS when it switches to a process

Advantages
• Easy to implement, fast context switch

Problems
• Internal fragmentation: memory in a partition not used by a 

i il bl hprocess is not available to other processes
• Partition size: one size does not fit all

– Fragmentation vs. fitting large programs
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Fixed Partitions (3)Fixed Partitions (3)Fixed Partitions (3)Fixed Partitions (3)
Improvement
• Partition size need not be equal.
• Allocation strategies

P titi 4– Maintain a separate queue for each 
partition size

– Maintain a single queue and allocate 

Partition 4
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to the closest job whose size fits in 
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– Search the whole input queue and 

Partition 2

0x4000p q
pick the largest job that fits in an 
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Variable Partitions (1)Variable Partitions (1)Variable Partitions (1)Variable Partitions (1)
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Variable Partitions (2)Variable Partitions (2)Variable Partitions (2)Variable Partitions (2)
Physical memory is broken up into variable-sized 
partitions
• IBM OS/MVT

H d i t b i t d li it i t• Hardware requirements: base register and limit register
– Physical address = virtual address + base register
– Base register loaded by OS when it switches to a processg y p

• The role of limit register: protection
– If (physical address > base + limit), then raise a protection fault.

Allocation strategies
• First fit: Allocate the first hole that is big enough• First fit: Allocate the first hole that is big enough
• Best fit: Allocate the smallest hole that is big enough
• Worst fit: Allocate the largest hole
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Variable Partitions (3)Variable Partitions (3)Variable Partitions (3)Variable Partitions (3)
Advantages
• No internal fragmentation

– Simply allocate partition size to be just big enough for process
But if we break the physical memory into fixed sized blocks and– But, if we break the physical memory into fixed-sized blocks and 
allocate memory in unit of block sizes (in order to reduce 
bookkeeping), we have internal fragmentation.

Problems
• External fragmentationExternal fragmentation

– As we load and unload jobs, holes are left scattered throughout 
physical memory

S l ti t t l f t ti• Solutions to external fragmentation:
– Compaction
– Paging and segmentation
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Overlays (1)Overlays (1)Overlays (1)Overlays (1)
Overlays for a two-pass assemblery p
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Overlays (2)Overlays (2)Overlays (2)Overlays (2)
Overlays
• Keep in memory only those instructions and data 

that are needed at any given time.
N ll i l t d b• Normally implemented by user

Advantagesg
• Needed when a process is larger than the amount of 

memory allocated to it.
• No special support needed from operating system.

ProblemsProblems
• Programming design of overlay structure is complex.
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Swapping (1)Swapping (1)Swapping (1)Swapping (1)
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Swapping (2)Swapping (2)Swapping (2)Swapping (2)
Swapping
• A process can be swapped temporarily out of 

memory to a backing store and then brought back 
into memory later for continued executioninto memory later for continued execution.

• Backing store 
– Fast disk large enough to accommodate copies of allFast disk large enough to accommodate copies of all 

memory images for all users
– Must provide direct access to these memory images

Major part of swap time is transfer time• Major part of swap time is transfer time.
– Directly proportional to the amount of memory swapped.

• Swapping a process with a pending I/OSwapping a process with a pending I/O
– Do not swap a process with pending I/O
– Execute I/O operations only into OS buffers
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