Virtual Memory Il

Jin-Soo Kim (jinsookim@skku.edu)
Computer Systems Laboratory
Sungkyunkwan University
http://csl.skku.edu

Sk

UNIVERSITY

* How to reduce the size of page tables?

= How to reduce the time for address
translation?

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

< e e

* Managing page tables
« Space overhead of page tables
— The size of the page table for a 32-bit address space with
4KB pages = 4MB (per process)
« How can we reduce this overhead?

— Observation: Only need to map the portion of the address
space actually being used (tiny fraction of entire address
space)

« How do we only map what is being used?
— Make the page table structure dynamically extensible
— Use another level of indirection:
» Two-level, hierarchical, hashed, etc.

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

. .
| / . 100—°
500 N
~[100 500
L] L]
L] : o
708 Pt —, 5
_ . 708
\ L] 5
outer page T 929 .
table o \ it
900 :
page of 929
page table
L]
page table L
memory

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

* Two-level page tables
« Virtual addresses have 3 parts:

Master page # Secondary page # Offset

— Master page table: master page number - secondary page table.

— Secondary page table: secondary page number > page frame
number.

logical address
Py | P2 | d

.

>

=

outer page d
table

page of
page table

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

= Example
« 32-bit address space, 4KB pages, 4bytes/PTE
« Want master page table in one page

Physical memory

Page frame N

10 10 12

Master page # Secondary page # Offset
I
v
Page frame Offset
Physical address
Vel

> /]

Master

page table Secondary page table

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

v

Page frame 6

Page frame 5

Page frame 4

Page frame 3

Page frame 2

Page frame 1

Page frame O

.

s ——
— e E—

* Address translation in Alpha AXP Architecture

« Three-level page tables

e 64-bit address divided

Virtual address

Into 3 segments
(coded in bits63/62)

— seg0 (Ox): user code

— segl (11): user stack

— kseg (10): kernel

« Alpha 21064

— Page size: 8KB

— Virtual address: 43bits

— Each page table is
one page long.

L3 pags table

R

PEE tabla antr: —‘

! Physical address
Physical page -frama numbar | Pags offset I

WMain mamary

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

* Hashed page tables
« When the address space is larger than 32 bits.

 Virtual page number is hashed into the hash table.

« Each hash table entry contains a linked list of
elements that hash to the same location.
« Each elements contains:
— The virtual page number
— The value of the mapped page frame
— A pointer to the next element in the linked list

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

= Example

logical address

p | d

— [q1s]']

physical
l address
T d
f 3
| pl r | e e

hash table

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

physical
memory

.

" Clustered page tables

A variant of hash page tables with the difference that

each entry stores mapping information for a block of
consecutive page tables

Virtual address

Virtual Page Block Number

Hash table

Block offset Offset
> VPBN _|—> VPBN
next next
PPNO PPNO
PPN1 PPN1
> PPN2 PPN2
PPN3 PPN3

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

Page Tables (1)

- Inverted page tables
e One entry for each real page of memory.

« Entry consists of the virtual address of the page
stored in that real memory location, with information
about the process that owns that page.

« Decreases memory needed to store each page table,
but increases time needed to search the table when a
page reference occurs.

e Use hash table to limit the search to one, or at most
a few, page-table entries.

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

logical ;
address Phiyowal
o | ,l. address physical
CPU —pd| p | d L d memory
search l i
pid| p
page table

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

e — —

* Addressing page tables
« Where are page tables stored? (and which address space?)
« Physical memory
— Easy to address, no translation required.
— But, allocated page tables consume memory for lifetime of VAS.
« Virtual memory (OS virtual address space)
— Cold (unused) page table pages can be paged out to disk.
— But, addressing page tables requires translation.
— Do not page the outer page table (called wiring).
« Now we've paged the page tables, might as well page the entire
OS address space, too.

— Need to wire special code and data (e.g., interrupt and exception
handlers)

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

= Making address translation efficient
« Original page table scheme doubled the cost of memory
lookups
— One lookup into the page table, another to fetch the data

« Two-level page tables triple the cost!
— Two lookups into the page tables, a third to fetch the data
— And this assumes the page table is in memory

e How can we make this more efficient?

— Goal: make fetching from a virtual address about as efficient as
fetching from a physical address

— Solutions:
- Cache the virtual-to-physical translation in hardware

- Translation Lookaside Buffer (TLB)
- TLB managed by the Memory Management Unit (MMU)

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

—_—

e ——

* Translation Lookaside Buffers
 Translate virtual page #s into PTEs
(not physical address)
« Can be done in a single machine cycle

Valid | Virtual page | Modified | Protection | Page frame
1 140 1 RW 31
1 20 0 R X 38
1 130 1 RW 29
1 129 1 RW 62
1 19 0 R X 50
1 21 0 R X 45
1 860 1 RW 14
1 861 1 RW 75

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

= TLB is implemented in hardware

« Fully associative cache (all entries looked up in parallel)
« Cache tags are virtual page numbers.

« Cache values are PTEs (entries from page tables).

« With PTE+offset, MMU can directly calculate the physical
address.

= TLBs exploit locality

« Processes only use a handful of pages at a time.
— 16-48 entries in TLB is typical (64-192KB)
— Can hold the "hot set” or "working set” of process

 Hit rates are therefore really important.

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

= Address translation with TLB

CPU

logical
address |

—

p

d

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

page frame

number number

TLB hit physical
l i address
f d —»

TLB 1
p -
TLB miss
» i
page table

physical
memory

* Handling TLB misses
« Address translations are mostly handled by the TLB

— > 99% of translations, but there are TLB misses occasionally
— In case of a miss, who places translations into the TLB?

« Hardware (MMU): Intel x86
— Knows where page tables are in memory
— OS maintains tables, HW access them directly
— Page tables have to be in hardware-defined format

« Software loaded TLB (OS)
— TLB miss faults to OS, OS finds right PTE and loads TLB
— Must be fast (but, 20-200 cycles typically)
— CPU ISA has instructions for TLB manipulation
— Page tables can be in any format convenient for OS (flexible)

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

* Managing TLBs

« OS ensures that TLB and page tables are consistent.
— When OS changes the protection bits of a PTE, it needs to
invalidate the PTE if it is in the TLB.
« Reload TLB on a process context switch.
— Remember, each process typically has its own page tables.
— Need to invalidate all the entries in TLB. (flush TLB)
— In IA-32, TLB is flushed automatically when the contents of CR3
(page directory base register) is changed.
— (cf.) Alternatively, we can store the PID as part of the TLB entry, but
this is expensive.
« When the TLB misses, and a new PTE is loaded, a cached PTE
must be evicted.
— Choosing a victim PTE called the "TLB replacement policy”.

— Implemented in hardware, usually simple (e.g., LRU)

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

= Situation

« Process is executing on the CPU, and it issues a read
to a (virtual) address.

TLB hit PA Memory

TLB miss rage !!!

page fault tables
protection fault

A\ 4

\ 4

PTE

data

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

/ Reference (2)

* The common case

The read goes to the TLB in the MMU.

TLB does a lookup using the page number of the
address.

The page number matches, returning a PTE.
TLB validates that the PTE protection allows reads.
PTE specifies which physical frame holds the page.

MMU combines the physical frame and offset into a
physical address.

MMU then reads from that physical address, returns
value to CPU.

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

* TLB misses: two possibilities
(1) MMU loads PTE from page table in memory.

— Hardware managed TLB, OS not involved in this step.

— OS has already set up the page tables so that the hardware
can access It directly.

(2) Trap to the OS.

— Software managed TLB, OS intervenes at this point.
— OS does lookup in page tables, loads PTE into TLB.
— OS returns from exception, TLB continues.

« At this point, there is a valid PTE for the address in
the TLB.

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

= TLB misses

« Page table lookup (by HW or OS) can cause a
recursive fault if page table is paged out.
— Assuming page tables are in OS virtual address space.
— Not a problem if tables are in physical memory.

« When TLB has PTE, it restarts translation.

— Common case is that the PTE refers to a valid page in
memory.

— Uncommon case is that TLB faults again on PTE because of
PTE protection bits.

(e.g., page is invalid)

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

= Page faults

e PTE can indicate a protection fault
— Read/Write/Execute — operation not permitted on page

— Invalid — virtual page not allocated, or page not in physical
memory.

« TLB traps to the OS (software takes over)

— Read/Write/Execute — OS usually will send fault back to the
process, or might be playing tricks (e.g., copy on write,
mapped files).

— Invalid (Not allocated) — OS sends fault to the process (e.qg.,
segmentation fault).

— Invalid (Not in physical memory) — OS allocates a frame, reads
from disk, and maps PTE to physical frame.

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

