
Vi t l M IIVi t l M IIVirtual Memory IIVirtual Memory II

Jin-Soo Kim (jinsookim@skku.edu)Jin Soo Kim (jinsookim@skku.edu)
Computer Systems Laboratory

Sungkyunkwan University
htt // l kk dhttp://csl.skku.edu

Today’s TopicsToday’s TopicsToday s TopicsToday s Topics
How to reduce the size of page tables?p g

How to reduce the time for addressHow to reduce the time for address
translation?

2CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

Page TablesPage TablesPage TablesPage Tables
Managing page tablesg g p g
• Space overhead of page tables

– The size of the page table for a 32-bit address space with
4KB pages = 4MB (per process)

• How can we reduce this overhead?
Ob ti O l d t th ti f th dd– Observation: Only need to map the portion of the address
space actually being used (tiny fraction of entire address
space)

• How do we only map what is being used?
– Make the page table structure dynamically extensible
– Use another level of indirection:

» Two-level, hierarchical, hashed, etc.

3CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

Two-level Page Tables (1)Two-level Page Tables (1)Two level Page Tables (1)Two level Page Tables (1)

4CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

Two-level Page Tables (2)Two-level Page Tables (2)Two level Page Tables (2)Two level Page Tables (2)
Two-level page tables
• Virtual addresses have 3 parts:

Master page # Secondary page # Offset

– Master page table: master page number secondary page table.
– Secondary page table: secondary page number page frame

number.number.

5CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

Two-level Page Tables (3)Two-level Page Tables (3)Two level Page Tables (3)Two level Page Tables (3)
Example
• 32-bit address space, 4KB pages, 4bytes/PTE
• Want master page table in one page

Master page # Secondary page # Offset

1210 10

Page frame N

Physical memory

Page frame Offset

….

Page frame 6

Page frame 5Physical address

Page frame 4

Page frame 3

P f 2Page frame 2

Page frame 1

Page frame 0
Master

6CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

Master
page table Secondary page table

Multi-level Page TablesMulti-level Page TablesMulti level Page TablesMulti level Page Tables
Address translation in Alpha AXP Architecture
• Three-level page tables
• 64-bit address divided

i t 3 tinto 3 segments
(coded in bits63/62)

– seg0 (0x): user codeg ()
– seg1 (11): user stack
– kseg (10): kernel

Al h 21064• Alpha 21064
– Page size: 8KB
– Virtual address: 43bits
– Each page table is

one page long.

7CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

Hashed Page Tables (1)Hashed Page Tables (1)Hashed Page Tables (1)Hashed Page Tables (1)
Hashed page tablesp g
• When the address space is larger than 32 bits.
• Virtual page number is hashed into the hash table.p g
• Each hash table entry contains a linked list of

elements that hash to the same location.
• Each elements contains:

– The virtual page number
– The value of the mapped page frame
– A pointer to the next element in the linked list

8CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

Hashed Page Tables (2)Hashed Page Tables (2)Hashed Page Tables (2)Hashed Page Tables (2)
Examplep

9CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

Hashed Page Tables (3)Hashed Page Tables (3)Hashed Page Tables (3)Hashed Page Tables (3)
Clustered page tablesp g
• A variant of hash page tables with the difference that

each entry stores mapping information for a block of
consecutive page tables

Virtual address

Virtual Page Block Number Block offset Offset

Virtual address

hash

VPBN

next

PPN0

VPBN

next

PPN0hash PPN0

PPN1

PPN2

PPN3

PPN0

PPN1

PPN2

PPN3h bl

10CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

PPN3 PPN3Hash table

Inverted Page Tables (1)Inverted Page Tables (1)Inverted Page Tables (1)Inverted Page Tables (1)
Inverted page tablesp g
• One entry for each real page of memory.
• Entry consists of the virtual address of the page y p g

stored in that real memory location, with information
about the process that owns that page.

• Decreases memory needed to store each page table,
but increases time needed to search the table when a

fpage reference occurs.
• Use hash table to limit the search to one, or at most

a few page table entriesa few, page-table entries.

11CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

Inverted Page Tables (2)Inverted Page Tables (2)Inverted Page Tables (2)Inverted Page Tables (2)
Examplep

12CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

Paging Page TablesPaging Page TablesPaging Page TablesPaging Page Tables
Addressing page tables
• Where are page tables stored? (and which address space?)
• Physical memory

E t dd t l ti i d– Easy to address, no translation required.
– But, allocated page tables consume memory for lifetime of VAS.

• Virtual memory (OS virtual address space)y (p)
– Cold (unused) page table pages can be paged out to disk.
– But, addressing page tables requires translation.

Do not page the outer page table (called wiring)– Do not page the outer page table (called wiring).

• Now we’ve paged the page tables, might as well page the entire
OS address space, too.

– Need to wire special code and data (e.g., interrupt and exception
handlers)

13CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

TLBs (1)TLBs (1)TLBs (1)TLBs (1)
Making address translation efficient
• Original page table scheme doubled the cost of memory

lookups
– One lookup into the page table another to fetch the dataOne lookup into the page table, another to fetch the data

• Two-level page tables triple the cost!
– Two lookups into the page tables, a third to fetch the data
– And this assumes the page table is in memory

• How can we make this more efficient?
– Goal: make fetching from a virtual address about as efficient as– Goal: make fetching from a virtual address about as efficient as

fetching from a physical address
– Solutions:

C h th i t l t h i l t l ti i h d- Cache the virtual-to-physical translation in hardware
- Translation Lookaside Buffer (TLB)
- TLB managed by the Memory Management Unit (MMU)

14CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

TLBs (2)TLBs (2)TLBs (2)TLBs (2)
Translation Lookaside Buffers
• Translate virtual page #s into PTEs

(not physical address)(not physical address)
• Can be done in a single machine cycle

15CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

TLBs (3)TLBs (3)TLBs (3)TLBs (3)
TLB is implemented in hardware
• Fully associative cache (all entries looked up in parallel)
• Cache tags are virtual page numbers.
• Cache values are PTEs (entries from page tables).
• With PTE+offset, MMU can directly calculate the physical

addressaddress.

TLBs exploit locality
• Processes only use a handful of pages at a time.

– 16-48 entries in TLB is typical (64-192KB)
Can hold the “hot set” or “working set” of process– Can hold the hot set or working set of process

• Hit rates are therefore really important.

16CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

TLBs (4)TLBs (4)TLBs (4)TLBs (4)
Address translation with TLB

17CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

TLBs (5)TLBs (5)TLBs (5)TLBs (5)
Handling TLB misses
• Address translations are mostly handled by the TLB

– > 99% of translations, but there are TLB misses occasionally
In case of a miss who places translations into the TLB?– In case of a miss, who places translations into the TLB?

• Hardware (MMU): Intel x86
– Knows where page tables are in memory
– OS maintains tables, HW access them directly
– Page tables have to be in hardware-defined format

• Software loaded TLB (OS)• Software loaded TLB (OS)
– TLB miss faults to OS, OS finds right PTE and loads TLB
– Must be fast (but, 20-200 cycles typically)
– CPU ISA has instructions for TLB manipulation
– Page tables can be in any format convenient for OS (flexible)

18CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

TLBs (6)TLBs (6)TLBs (6)TLBs (6)
Managing TLBs
• OS ensures that TLB and page tables are consistent.

– When OS changes the protection bits of a PTE, it needs to
invalidate the PTE if it is in the TLBinvalidate the PTE if it is in the TLB.

• Reload TLB on a process context switch.
– Remember, each process typically has its own page tables.
– Need to invalidate all the entries in TLB. (flush TLB)
– In IA-32, TLB is flushed automatically when the contents of CR3

(page directory base register) is changed.
– (cf.) Alternatively, we can store the PID as part of the TLB entry, but

this is expensive.

• When the TLB misses and a new PTE is loaded a cached PTEWhen the TLB misses, and a new PTE is loaded, a cached PTE
must be evicted.

– Choosing a victim PTE called the “TLB replacement policy”.
I l d i h d ll i l (LRU)

19CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

– Implemented in hardware, usually simple (e.g., LRU)

Memory Reference (1)Memory Reference (1)Memory Reference (1)Memory Reference (1)
Situation
• Process is executing on the CPU, and it issues a read

to a (virtual) address.

MemoryPATLB hit Memory
TLB

VA PATLB hit

PPage
tablesTLB miss

page fault
protection fault

PTE
data

20CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

Memory Reference (2)Memory Reference (2)Memory Reference (2)Memory Reference (2)
The common case
• The read goes to the TLB in the MMU.
• TLB does a lookup using the page number of the p g p g

address.
• The page number matches, returning a PTE.p g g
• TLB validates that the PTE protection allows reads.
• PTE specifies which physical frame holds the page.p p y p g
• MMU combines the physical frame and offset into a

physical address.
• MMU then reads from that physical address, returns

value to CPU.

21CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

Memory Reference (3)Memory Reference (3)Memory Reference (3)Memory Reference (3)
TLB misses: two possibilitiesp
(1) MMU loads PTE from page table in memory.

– Hardware managed TLB, OS not involved in this step.
– OS has already set up the page tables so that the hardware

can access it directly.

(2) T t th OS(2) Trap to the OS.
– Software managed TLB, OS intervenes at this point.
– OS does lookup in page tables loads PTE into TLBOS does lookup in page tables, loads PTE into TLB.
– OS returns from exception, TLB continues.

• At this point, there is a valid PTE for the address in
the TLB.

22CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

Memory Reference (4)Memory Reference (4)Memory Reference (4)Memory Reference (4)
TLB misses
• Page table lookup (by HW or OS) can cause a

recursive fault if page table is paged out.
– Assuming page tables are in OS virtual address space.
– Not a problem if tables are in physical memory.

Wh TLB h PTE i l i• When TLB has PTE, it restarts translation.
– Common case is that the PTE refers to a valid page in

memorymemory.
– Uncommon case is that TLB faults again on PTE because of

PTE protection bits.
(e.g., page is invalid)

23CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

Memory Reference (5)Memory Reference (5)Memory Reference (5)Memory Reference (5)
Page faultsg
• PTE can indicate a protection fault

– Read/Write/Execute – operation not permitted on page
– Invalid – virtual page not allocated, or page not in physical

memory.

TLB t t th OS (ft t k)• TLB traps to the OS (software takes over)
– Read/Write/Execute – OS usually will send fault back to the

process, or might be playing tricks (e.g., copy on write, p , g p y g (g , py ,
mapped files).

– Invalid (Not allocated) – OS sends fault to the process (e.g.,
segmentation fault)segmentation fault).

– Invalid (Not in physical memory) – OS allocates a frame, reads
from disk, and maps PTE to physical frame.

24CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

