Virtual Memory III

Jin-Soo Kim (jinsookim@skku.edu)
Computer Systems Laboratory
Sungkyunkwan University
http://csl.skku.edu
Today’s Topics

- What if the physical memory becomes full?
 - Page replacement algorithms

- How to manage memory among competing processes?

- Advanced virtual memory techniques
 - Shared memory
 - Copy on write
 - Memory-mapped files
Page Replacement (1)

- **Page replacement**
 - When a page fault occurs, the OS loads the faulted page from disk into a page frame of memory.
 - At some point, the process has used all of the page frames it is allowed to use.
 - When this happens, the OS must **replace** a page for each page faulted in.
 - It must evict a page to free up a page frame.
 - The **page replacement algorithm** determines how this is done.
Evicting the best page

- The goal of the replacement algorithm is to reduce the fault rate by selecting the best victim page to remove.
- The best page to evict is the one never touched again.
 - as process will never again fault on it.
- “Never” is a long time, so picking the page closest to “never” is the next best thing
 - Belady’s proof: Evicting the page that won’t be used for the longest period of time minimizes the number of page faults.
Belady’s Algorithm

- **Optimal page replacement**
 - Replace the page that will not be used for the longest time in the future.
 - Has the lowest fault rate for any page reference stream.
 - Problem: have to predict the future
 - Why is Belady’s useful? – Use it as a yardstick!
 - Compare other algorithms with the optimal to gauge room for improvement.
 - If optimal is not much better, then algorithm is pretty good, otherwise algorithm could use some work.
 - Lower bound depends on workload, but random replacement is pretty bad.
FIFO (1)

• **First-In First-Out**
 - Obvious and simple to implement
 - Maintain a list of pages in order they were paged in
 - On replacement, evict the one brought in longest time ago
 - Why might this be good?
 - Maybe the one brought in the longest ago is not being used.
 - Why might this be bad?
 - Maybe, it’s not the case.
 - We don’t have any information either way.
 - FIFO suffers from “Belady’s Anomaly”
 - The fault rate might increase when the algorithm is given more memory.
FIFO (2)

- **Example: Belady’s anomaly**
 - Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
 - 3 frames: 9 faults
 - Frames: 1, 2, 3
 - Reference: 1, 2, 3, 4, 1, 2, 5
 - Faults: 9
 - 4 frames: 10 faults
 - Frames: 1, 2, 3, 4
 - Reference: 1, 2, 3, 4, 1, 2, 3, 4
 - Faults: 10

![FIFO Example](image)
Least Recently Used

- LRU uses reference information to make a more informed replacement decision.
 - Idea: past experience gives us a guess of future behavior.
 - On replacement, evict the page that has not been used for the longest time in the past.
 - LRU looks at the past, Belady’s wants to look at future.

- Implementation
 - Counter implementation: put a timestamp
 - Stack implementation: maintain a stack

- Why do we need an approximation?
LRU (2)

- **Approximating LRU**
 - Many LRU approximations use the PTE reference (R) bit.
 - R bit is set whenever the page is referenced (read or written)
 - **Counter-based approach**
 - Keep a counter for each page.
 - At regular intervals, for every page, do:
 - If R = 0, increment the counter (hasn’t been used)
 - If R = 1, zero the counter (has been used)
 - Zero the R bit
 - The counter will contain the number of intervals since the last reference to the page.
 - The page with the largest counter is the least recently used.
 - **Some architectures don’t have a reference bit.**
 - Can simulate reference bit using the valid bit to induce faults.
Second Chance (1)

- **Second chance or LRU clock**
 - FIFO with giving a second chance to a recently referenced page.
 - Arrange all of physical page frames in a big circle (clock).
 - A clock hand is used to select a good LRU candidate.
 - Sweep through the pages in circular order like a clock
 - If the R bit is off, it hasn’t been used recently and we have a victim.
 - If the R bit is on, turn it off and go to next page.
 - Arm moves quickly when pages are needed.
 - Low overhead if we have plenty of memory.
 - If memory is large, “accuracy” of information degrades.
When a page fault occurs, the page the hand is pointing to is inspected. The action taken depends on the R bit:
- $R = 0$: Evict the page
- $R = 1$: Clear R and advance hand
NRU or enhanced second chance

- Use R (reference) and M (modify) bits
 - Periodically, (e.g., on each clock interrupt), R is cleared, to distinguish pages that have not been referenced recently from those that have been.
Algorithm
- Removes a page at random from the lowest numbered nonempty class.
- It is better to remove a modified page that has not been referenced in at least one clock tick than a clean page that is in heavy use.
- Used in Macintosh.

Advantages
- Easy to understand.
- Moderately efficient to implement.
- Gives a performance that, while certainly not optimal, may be adequate.
LFU (1)

- **Counting-based page replacement**
 - A software counter is associated with each page.
 - At each clock interrupt, for each page, the R bit is added to the counter.
 - The counters denote how often each page has been referenced.

- **Least frequently used (LFU)**
 - The page with the smallest count will be replaced.
 - (cf.) Most frequently used (MFU) page replacement
 - The page with the largest count will be replaced
 - Based on the argument that the page with the smallest count was probably just brought in and has yet to be used.
 - It never forgets anything.
 - A page may be heavily used during the initial phase of a process, but then is never used again
Aging

- The counters are shifted right by 1 bit before the R bit is added to the leftmost.

<table>
<thead>
<tr>
<th>Page</th>
<th>R bits for pages 0-5, clock tick 0</th>
<th>R bits for pages 0-5, clock tick 1</th>
<th>R bits for pages 0-5, clock tick 2</th>
<th>R bits for pages 0-5, clock tick 3</th>
<th>R bits for pages 0-5, clock tick 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10000000</td>
<td>11000000</td>
<td>11100000</td>
<td>11110000</td>
<td>01111000</td>
</tr>
<tr>
<td>1</td>
<td>00000000</td>
<td>10000000</td>
<td>11000000</td>
<td>01100000</td>
<td>10110000</td>
</tr>
<tr>
<td>2</td>
<td>10000000</td>
<td>01000000</td>
<td>00100000</td>
<td>00100000</td>
<td>10001000</td>
</tr>
<tr>
<td>3</td>
<td>00000000</td>
<td>00000000</td>
<td>10000000</td>
<td>01000000</td>
<td>00100000</td>
</tr>
<tr>
<td>4</td>
<td>10000000</td>
<td>11000000</td>
<td>01100000</td>
<td>10110000</td>
<td>01011000</td>
</tr>
<tr>
<td>5</td>
<td>10000000</td>
<td>01000000</td>
<td>10100000</td>
<td>01010000</td>
<td>00101000</td>
</tr>
</tbody>
</table>

(a) (b) (c) (d) (e)
Allocation of Frames

- **Problem**
 - In a multiprogramming system, we need a way to allocate physical memory to competing processes.
 - What if a victim page belongs to another process?
 - How to determine how much memory to give to each process?
 - **Fixed space algorithms**
 - Each process is given a limit of pages it can use.
 - When it reaches its limit, it replaces from its own pages.
 - **Local replacement**: some process may do well, others suffer.
 - **Variable space algorithms**
 - Processes’ set of pages grows and shrinks dynamically.
 - **Global replacement**: one process can ruin it for the rest (Linux)
Thrashing (1)

Thrashing

- What the OS does if page replacement algorithms fail.
- Most of the time is spent by an OS paging data back and forth from disk.
 - No time is spent doing useful work.
 - The system is overcommitted.
 - No idea which pages should be in memory to reduce faults.
 - Could be that there just isn’t enough physical memory for all processes.

- Possible solutions
 - Swapping – write out all pages of a process
 - Buy more memory.
Thrashing (2)

![Graph showing CPU utilization vs. degree of multiprogramming with thrashing point indicated.]
Working Set Model (1)

- **Working set**
 - A working set of a process is used to model the dynamic locality of its memory usage.
 - i.e., working set = set of pages process currently “needs”
 - Peter Denning, 1968.
 - **Definition**
 - \(WS(t,w) = \{ \text{pages } P \text{ such that } P \text{ was referenced in the time interval } (t, t-w) \} \)
 - \(t \): time, \(w \): working set window size (measured in page references)
 - A page is in the working set only if it was referenced in the last \(w \) references.
Working Set Model (2)

- Working set size (WSS)
 - The number of pages in the working set
 - The number of pages referenced in the interval \((t, t-w) \)
 - The working set size changes with program locality.
 - During periods of poor locality, more pages are referenced.
 - Within that period of time, the working set size is larger.
 - Intuitively, working set must be in memory to prevent heavy faulting (thrashing).
 - Controlling the degree of multiprogramming based on the working set:
 - Associate parameter “wss” with each process.
 - If the sum of “wss” exceeds the total number of frames, suspend a process.
 - Only allow a process to start if its “wss”, when added to all other processes, still fits in memory.
 - Use a local replacement algorithm within each process.
Working Set Model (3)

- **Working set page replacement**
 - Maintaining the set of pages touched in the last k references is expensive.
 - Approximate the working set as the set of pages used during the past time interval.
 - Measured using the current virtual time: the amount of CPU time a process has actually used.
 - Find a page that is not in the working set and evict it.
 - Associate the “Time of last use (Tlast)” field in each PTE.
 - A periodic clock interrupt clears the R bit.
 - On every page fault, the page table is scanned to look for a suitable page to evict.
 - If R = 1, timestamp the current virtual time (Tlast ← Tcurrent).
 - If R = 0 and (Tcurrent – Tlast) > τ, evict the page.
 - Otherwise, remember the page with the greatest age.
Working Set Model (4)

Scan all pages examining R bit:
- if \(R = 1 \)
 - set time of last use to current virtual time
- if \(R = 0 \) and age > \(\tau \)
 - remove this page
- if \(R = 0 \) and age \(\leq \tau \)
 - remember the smallest time
Page Fault Frequency

- A variable space algorithm that uses a more ad-hoc approach.
 - Monitor the fault rate for each process.
 - If the fault rate is above a high threshold, give it more memory, so that it faults less (but not always – FIFO, Belady’s anomaly).
 - If the fault rate is below a low threshold, take away memory (again, not always).
- If the PFF increases and no free frames are available, we must select some process and suspend it.
PFF (2)

The diagram illustrates the relationship between page-fault rate and the number of frames in memory. As the number of frames increases, the page-fault rate decreases. Conversely, as the number of frames decreases, the page-fault rate increases. There is an upper bound and a lower bound for the page-fault rate. Increasing the number of frames reduces the page-fault rate, while decreasing the number of frames increases it.
Advanced VM Functionality

- Virtual memory tricks
 - Shared memory
 - Copy on write
 - Memory-mapped files
Shared Memory (1)

- **Shared memory**
 - Private virtual address spaces protect applications from each other.
 - But this makes it difficult to share data.
 - Parents and children in a forking Web server or proxy will want to share an in-memory cache without copying.
 - Read/Write (access to share data)
 - Execute (shared libraries)
 - We can use shared memory to allow processes to share data using direct memory reference.
 - Both processes see updates to the shared memory segment.
 - How are we going to coordinate access to shared data?
Shared Memory (2)

- **Implementation**
 - How can we implement shared memory using page tables?
 - Have PTEs in both tables map to the same physical frame.
 - Each PTE can have different protection values.
 - Must update both PTEs when page becomes invalid.
 - Can map shared memory at same or different virtual addresses in each process’ address space
 - Different: Flexible (no address space conflicts), but pointers inside the shared memory segment are invalid.
 - Same: Less flexible, but shared pointers are valid.
Copy On Write (1)

- **Process creation**
 - requires copying the entire address space of the parent process to the child process.
 - Very slow and inefficient!

- **Solution 1: Use threads**
 - Sharing address space is free.

- **Solution 2: Use vfork() system call**
 - vfork() creates a process that shares the memory address space of its parent.
 - To prevent the parent from overwriting data needed by the child, the parent’s execution is blocked until the child exits or executes a new program.
 - Any change by the child is visible to the parent once it resumes.
 - Useful when the child immediately executes exec().
Solution 3: Copy On Write (COW)

- Instead of copying all pages, create shared mappings of parent pages in child address space.
- Shared pages are protected as read-only in child.
 - Reads happen as usual
 - Writes generate a protection fault, trap to OS, and OS copies the page, changes page mapping in client page table, restarts write instruction
Memory-Mapped Files (1)

- **Memory-mapped files**
 - Mapped files enable processes to do file I/O using memory references.
 - Instead of open(), read(), write(), close()
 - `mmap()`: bind a file to a virtual memory region
 - PTEs map virtual addresses to physical frames holding file data
 - `<Virtual address base + N>` refers to offset N in file
 - Initially, all pages in mapped region marked as invalid.
 - OS reads a page from file whenever invalid page is accessed.
 - OS writes a page to file when evicted from physical memory.
 - If page is not dirty, no write needed.
Memory-Mapped Files (2)

- **Note:**
 - File is essentially backing store for that region of the virtual address space (instead of using the swap file).
 - Virtual address space not backed by “real” files also called “anonymous VM”.

- **Advantages**
 - Uniform access for files and memory (just use pointers)
 - Less copying
 - Several processes can map the same file allowing the pages in memory to be shared.

- **Drawbacks**
 - Process has less control over data movement.
 - Does not generalize to streamed I/O (pipes, sockets, etc.)
Summary (1)

- **VM mechanisms**
 - Physical and virtual addressing
 - Partitioning, Paging, Segmentation
 - Page table management, TLBs, etc.

- **VM policies**
 - Page replacement algorithms
 - Memory allocation policies

- **VM requires hardware and OS support**
 - MMU (Memory Management Unit)
 - TLB (Translation Lookaside Buffer)
 - Page tables, etc.
Summary (2)

- **VM optimizations**
 - Demand paging (space)
 - Managing page tables (space)
 - Efficient translation using TLBs (time)
 - Page replacement policy (time)

- **Advanced functionality**
 - Sharing memory
 - Copy on write
 - Mapped files