
I/O S tI/O S tI/O SystemsI/O Systems

Jin-Soo Kim (jinsookim@skku.edu)Jin Soo Kim (jinsookim@skku.edu)
Computer Systems Laboratory

Sungkyunkwan University
htt // l kk dhttp://csl.skku.edu

Today’s TopicsToday’s TopicsToday s TopicsToday s Topics
Device characteristics
• Block device vs. Character device
• Direct I/O vs. Memory-mapped I/O/ y pp /
• Polling vs. Interrupts
• Programmed I/O vs. DMAog a ed /O s.
• Blocking vs. Non-blocking I/O

I/O software layers

2CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

A Typical PC Bus StructureA Typical PC Bus StructureA Typical PC Bus StructureA Typical PC Bus Structure

3CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

I/O Devices (1)I/O Devices (1)I/O Devices (1)I/O Devices (1)
Block device
• Stores information in fixed-size blocks, each one with

its own address.
• 512B – 32KB per block
• It is possible to read or write each block

independently of all the other ones.
• Disks, tapes, etc.

Character device
• Delivers or accepts a stream of characters.p
• Not addressable and no seek operation.
• Printers, networks, mice, keyboards, etc.

4CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

, , , y ,

I/O Devices (2)I/O Devices (2)I/O Devices (2)I/O Devices (2)

USB 2.0: 60 MB/sUSB 2.0: 60 MB/s

5CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

I/O Devices (3)I/O Devices (3)I/O Devices (3)I/O Devices (3)
Device controller (or host adapter)(p)
• I/O devices have components:

– Mechanical component
– Electronic component

• The electronic component is the device controller.
– May be able to handle multiple devices.

• Controller’s tasks
C i l bi bl k f b– Convert serial bit stream to block of bytes.

– Perform error correction as necessary.
– Make available to main memoryMake available to main memory.

6CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

Accessing I/O Devices (1)Accessing I/O Devices (1)Accessing I/O Devices (1)Accessing I/O Devices (1)
Direct I/O
• Use special I/O instructions to an I/O port address.

7CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

Accessing I/O Devices (2)Accessing I/O Devices (2)Accessing I/O Devices (2)Accessing I/O Devices (2)
Memory-mapped I/Oy pp
• The device control registers are mapped into the

address space of the processor.
– The CPU executes I/O requests using the standard data

transfer instructions.

I/O d i d i b itt ti l i C• I/O device drivers can be written entirely in C.
• No special protection mechanism is needed to keep

user processes from performing I/Ouser processes from performing I/O
– Can give a user control over specific devices but not others

by simply including the desired pages in its page table.

• Reading a device register and testing its value is done
with a single instruction.

8CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

Polling vs. Interrupts (1)Polling vs. Interrupts (1)Polling vs. Interrupts (1)Polling vs. Interrupts (1)
Polled I/O
• CPU asks (“polls”) devices if need attention.

– ready to receive a command
– command status, etc.

• Advantages
– Simple
– Software is in control.

Efficient if CPU finds a device to be ready soon– Efficient if CPU finds a device to be ready soon.

• Disadvantages
– Inefficient in non-trivial system (high CPU utilization)Inefficient in non trivial system (high CPU utilization).
– Low priority devices may never be serviced.

9CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

Polling vs. Interrupts (2)Polling vs. Interrupts (2)Polling vs. Interrupts (2)Polling vs. Interrupts (2)
Interrupt-driven I/O
• I/O devices request interrupt when need attention.
• Interrupt service routines specific to each device are

i k dinvoked.
• Interrupts can be shared between multiple devices.

Advantages• Advantages
– CPU only attends to device when necessary.
– More efficient than polling in general.p g g

• Disadvantages
– Excess interrupts slow (or prevent) program execution.

O h d (d 1 i b f d)– Overheads (may need 1 interrupt per byte transferred)

10CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

Polling vs. Interrupts (3)Polling vs. Interrupts (3)Polling vs. Interrupts (3)Polling vs. Interrupts (3)

11CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

Polling vs. Interrupts (4)Polling vs. Interrupts (4)Polling vs. Interrupts (4)Polling vs. Interrupts (4)

12CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

Programmed I/O vs. DMAProgrammed I/O vs. DMAProgrammed I/O vs. DMAProgrammed I/O vs. DMA
DMA (Direct Memory Access)(y)
• Bypasses CPU to transfer data directly between I/O

device and memory.
• Used to avoid programmed I/O for large data

movement.

13CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

Blocking vs. Non-Blocking I/OBlocking vs. Non-Blocking I/OBlocking vs. Non Blocking I/OBlocking vs. Non Blocking I/O
Blocking I/Og
• Process is suspended until I/O completed.
• Easy to use and understand.y

Nonblocking I/ONonblocking I/O
• I/O call returns quickly, with a return value that

indicates how many bytes were transferredindicates how many bytes were transferred.
• A nonblocking read() returns immediately with

whatever data available – the full number of byteswhatever data available the full number of bytes
requested, fewer, or none at all.

14CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

Goals of I/O SoftwareGoals of I/O SoftwareGoals of I/O SoftwareGoals of I/O Software
Goals
• Device independence

– Programs can access any I/O device without specifying device in
advance.

• Uniform naming
– Name of a file or device should simply be a string or an integer.

E h dli• Error handling
– Handle as close to the hardware as possible.

• Synchronous vs. asynchronousy y
– blocked transfers vs. interrupt-driven

• Buffering
Data coming off a device cannot be stored in final destination– Data coming off a device cannot be stored in final destination.

• Sharable vs. dedicated devices
– Disks vs. tape drives

15CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

– Unsharable devices introduce problems such as deadlocks.

I/O Software LayersI/O Software LayersI/O Software LayersI/O Software Layers

User‐level I/O Software

Device‐independent I/O Software

Interrupt Handlers

Device Drivers

Hardware

Interrupt Handlers

16CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

Network

Interrupt HandlersInterrupt HandlersInterrupt HandlersInterrupt Handlers
Handling interruptsg p

Critical

ti

: Acknowledge an interrupt to the PIC.
: Reprogram the PIC or the device controller.

Reenable interrupts

actions : Update data structures accessed by both the device
and the processor.

U d d h d l bNoncritical

actions

: Update data structures that are accessed only by
the processor.
(e.g., reading the scan code from the keyboard)

Return from interrupts

Noncritical
: Actions may be delayed.
: Copy buffer contents into the address space of some

deferred

actions

: Copy buffer contents into the address space of some
process (e.g., sending the keyboard line buffer to the
terminal handler process).
B h lf (Li)

17CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

: Bottom half (Linux)

Device Drivers (1)Device Drivers (1)Device Drivers (1)Device Drivers (1)
Device drivers
• Device-specific code to control each I/O device

interacting with device-independent I/O software and
interrupt handlers.

• Requires to define a well-defined model and a
d d i f f h h i i h hstandard interface of how they interact with the rest

of the OS.
I l ti d i d i• Implementing device drivers:
– Statically linked with the kernel.
– Selectively loaded into the system during boot timeSelectively loaded into the system during boot time.
– Dynamically loaded into the system during execution.

(especially for hot pluggable devices).

18CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

Device Drivers (2)Device Drivers (2)Device Drivers (2)Device Drivers (2)

19CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

Device Drivers (3)Device Drivers (3)Device Drivers (3)Device Drivers (3)
The problemp
• Reliability remains a crucial, but unresolved problem

– 5% of Windows systems crash every day
– Huge cost of failures: stock exchange, e-commerce, …
– Growing “unmanaged systems”: digital appliances, consumer

electronics deviceselectronics devices

• OS extensions are increasingly prevalent
– 70% of Linux kernel code70% of Linux kernel code
– Over 35,000 drivers with over 120,000 versions on Windows XP
– Written by less experienced programmer

• Extensions are a leading cause of OS failure
– Drivers cause 85% of Windows XP crashes

20CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

– Drivers are 7 times buggier than the kernel in Linux

Device-Independent I/O SW (1)Device-Independent I/O SW (1)Device Independent I/O SW (1)Device Independent I/O SW (1)
Uniform interfacing for device driversg
• In Unix, devices are modeled as special files.

– They are accessed through the use of system calls such as
open(), read(), write(), close(), ioctl(), etc.

– A file name is associated with each device.

Major device number locates the appropriate driver• Major device number locates the appropriate driver.
– Minor device number (stored in i-node) is passed as a

parameter to the driver in order to specify the unit to be p p y
read or written.

• The usual protection rules for files also apply to I/O
d idevices.

21CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

Device-Independent I/O SW (2)Device-Independent I/O SW (2)Device Independent I/O SW (2)Device Independent I/O SW (2)
Buffering
(a) Unbuffered
(b) Buffered in user space
() B ff d i th k l(c) Buffered in the kernel space
(d) Double buffering in the kernel

22CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

Device-Independent I/O SW (3)Device-Independent I/O SW (3)Device Independent I/O SW (3)Device Independent I/O SW (3)
Error reportingp g
• Many errors are device-specific and must be handled

by the appropriate driver, but the framework for error
handling is device independent.

• Programming errors vs. actual I/O errors
• Handling errors

– Returning the system call with an error code.
R i i b f i– Retrying a certain number of times.

– Ignoring the error.
– Killing the calling processKilling the calling process.
– Terminating the system.

23CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

Device-Independent I/O SW (4)Device-Independent I/O SW (4)Device Independent I/O SW (4)Device Independent I/O SW (4)
Allocating and releasing dedicated devices
• Some devices cannot be shared.
(1) Require processes to perform open()’s on the

i l fil f d i di tlspecial files for devices directly.
– The process retries if open() fails.

(2) Have special mechanisms for requesting and(2) Have special mechanisms for requesting and
releasing dedicated devices.
– An attempt to acquire a device that is not available blocks

th llthe caller.

Device-independent block size
• Treat several sectors as a single logical block.
• The higher layers only deal with abstract devices that

ll h bl k i

24CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

all use the same block size.

User-Space I/O SoftwareUser-Space I/O SoftwareUser Space I/O SoftwareUser Space I/O Software
Provided as a libraryy
• Standard I/O library in C

– fopen() vs. open()?
– Buffering for fgetc()?

Spooling
• A way of dealing with dedicated I/O devices in aA way of dealing with dedicated I/O devices in a

multiprogramming system.
• Implemented by a daemon and a spooling directory.p y p g y
• Printers, network file transfers, USENET news, mails,

etc.

25CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

I/O Systems LayersI/O Systems LayersI/O Systems LayersI/O Systems Layers

26CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

