File System Internals

Jin-Soo Kim (jinsookim@skku.edu)
Computer Systems Laboratory
Sungkyunkwan University
http://csl.skku.edu

Sk

UNIVERSITY

" File system implementation
« File descriptor table, File table
* Virtual file system

" File system design issues
« Directory implementation: filename - metadata

e AllAFAAtiAnNn: Mmoaftada+ta D I,
rF o MA\lMiovcladlilivilil. 11icvauuaula V4

set of data blocks

Q
Q
Q
0

Reliability issues
Performance issues

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

= User’s view on file systems:
e How files are named?
« What operations are allowed on them?
« What the directory tree looks like?

* Implementor’s view on file systems:
« How files and directories are stored?
« How disk space is managed?
« How to make everything work efficiently and reliably?

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

boot block

super block

boot code

bitmaps

partition table

i-nodes

Partition 1 FS-

root dir

(active) dependent

files
&
directories

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

: fs metadata

(type, # blocks, etc.)

: data structures for

free space mgmt.

: file metadata

process A

__/

file table

(system-wide
open-file table)

count
offset
file attributes

per-process
file descriptor table

in-memory
partition table

directory cache

process B

buffer cache

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

System call interface

Virtual File System (VFS)

(o] [ots | [oxz | [costs] =+ [mmts] [orocts

B I

device driver

N

] ¢
0 & 3

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

= Virtual File System

« Manages kernel-level file abstractions in one format
for all file systems.

« Receives system call requests from user-level (e.g.,
open, write, stat, etc.)

 Interacts with a specific file system based on mount
point traversal.

« Receives requests from other parts of the kernel,
mostly from memory management.

« Translates file descriptors to VFS data structures (such
as vnode).

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

* Linux: VFS common file model
« The superblock object

— stores information concerning a mounted file system.

The inode object
— stores general information about a specific file.

The file object

— stores information about the interaction between an open
file and a process.

The dentry object

— stores information about the linking of a directory entry with
the corresponding file.

In order to stick to the VFS common file model, in-
kernel structures may be constructed on the fly.

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

" Directory structure
« Table (fixed length entries)

 Linear list
— Simple to program, but time-consuming.
— Requires a linear search to find an entry.

— Entries may be sorted to decrease the average search time
and to produce a sorted directory listing easily (e.g., using B-
tree).

« Hash table

— Decreases the directory search time.

— A hash table is generally fixed size and the hash function
depends on that size. (need mechanisms for collisions)

— The number of files can be large:
(1) enlarge the hash table and remap.
(2) use a chained-overflow hash table.

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

= The location of metadata

 In the directory entry

“foo” owner, size, ACL,
access time, location, ...
“bar” owner, size, ACL,
access time, location, ...
 In the separate — e
- size
data structure “bar” owner AL
size access time
. ACL location, ...
(e'g'l |—n0de) access time
location, ...

« A hybrid approach “foo” | location

owner, size, ...

“bar” location

owner, size, ...

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

A\ 4

= Supporting long file names

File 1 entry length - Pointer to file 1's name Entry

for one

File 1 attributes File 1 attributes file
Entry - - -
for one < P r o | Pointer to file 2's name
file 8 e t - _ _
b 0 P 9 File 2 attributes
L _® t X . Pointer to file 3's name

File 2 entry length

File 3 attributes
File 2 attributes

p e r
(e} n n e -
| E P r o J
File 3 entry length = c L -
= b u d g
File 3 attributes e t X p
> Heap
i | o] o [® ° d > :
n e |
f) 0
X i
(@) (b)

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

= Contiguous allocation

A file occupies a set
of contiguous blocks
on the disk.

. Used by IBM VM/CMS

N
B g

count
o] 1] 2] 31
f
4] 5[] e[] 7]
8] o[110111
tr
1211314151
16[]17[J18[]19[]
_ mail
20[J21[J22[]23[]
24[]25[J26[127[]

list

28[29[J30[131[]

directory
file start length
count 0 2
tr 14 3
mail 19 6
list 28 4
f 6 2

——

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

= Contiguous allocation (cont'd)

« Advantages
— The number of disk seeks is minimal.
— Directory entries can be simple:
<file name, starting disk block, length, etc.>

« Disadvantages
— Requires a dynamic storage allocation: First / best fit.
— External fragmentation: may require a compaction.
— The file size is hard to predict and varying over time.

« Feasible and widely used for CD-ROMS

— All the file sizes are known in advance.
— Files will never change during subsequent use.

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

* Modified contiguous allocation

A contiguous chunk of space is allocated initially.

— When the amount is not large enough, another chunk of a
contiguous space (an extent) is added.

Advantages
— Still the directory entry can be simple.
<name, starting disk block, length, link to the extent>
Disadvantages

— Internal fragmentation: if the extents are too large.
— External fragmentation: if we allow varying-sized extents.

Used by Veritas File System (VxFS).

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

= |inked allocation
e Each fileis a linked ¢ O

list of disk blocks.

directory
file start end
jeep 9 25

20[J21[Je2[]23[]

24[]25[26[]27[]
28[29[J30[131[]

N ____

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

= Linked allocation (cont’'d)

« Advantages
— Directory entries are simple:
<file name, starting block, ending block, etc.>

— No external fragmentation: the disk blocks may be scattered
anywhere on the disk.

— A file can continue to grow as long as free blocks are
available.

« Disadvantages
— It can be used only for sequentially accessed files.

— Space overhead for maintaining pointers to the next disk
block.

— The amount of data storage in a block is no longer a power
of two because the pointer takes up a few bytes.

— Fragile: a pointer can be lost or damaged.

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

* Linked allocation using clusters

« Collect blocks into multiples (clusters) and allocate
the clusters to files.
—e.g., 4 blocks / 1 cluster

« Advantages
— The logical-to-physical block mapping remains simple.
— Improves disk throughput (fewer disk seeks)

nAAII IAAAI ol Y Yol FaS W VaY o A‘AI LAM IAA:IA*AMA
— Reduclcd spdice ovellicalu 101 POITiLels.

« Disadvantages
— Internal fragmentation

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

.

—
— e E—

" Linked allocation using a FAT

« A section of disk at the beginning of each partition is
set aside to contain a file allocation table (FAT).

e FAT should be cached 2rectevem

[test [eee | 217 |—
to minimize disk seeks. ~ nmeme start block 0
— Space overhead can be
substantial. B
« Random access time is s ,
Improved.
« Used by MS-DOS, OS/2 618339 L
— cf. FAT-16: 2GB limitation e biooke 1

with 32KB block size FAT

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

=» Indexed allocation

« Bring all the pointers together into one location
(index block or i-node)

« Each file has its own index block.

~ T directory mots
— file index block owners (2)
o 1|:\2|:| 3] ==k 1?’ timestamps (3)
size block count
oL SRl
8] o J10[11 o
12 13114 fs :
Lsl] \ direct blocks 7 .
16[] 18[]h. ata
| = e—{daE] _
20LJ21[122fA23 single indirect —4>|E s
24[J2s[f26[J27[] _ double indirect - data :E >+ ,[data]
28[29[J30[131 [] triple indirect > :_
o |+l data |

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

= Indexed allocation (cont'd)

« Advantages

— Supports direct access, without suffering from external
fragmentation.

— I-node need only be in memory when the corresponding
file is open.
« Disadvantages
— Space overhead for indexes:
(1) Linked scheme: link several index blocks
(2) Multilevel index blocks
(3) Combined scheme: UNIX
- 12 direct blocks, single indirect block,
double indirect block, triple indirect block

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

= Bitmap or bit vector
« Each block is represented by 1 bit.

— 1 = free, 0 = allocated

« Simple and efficient in finding the first free block.
— May be accelerated by CPU’s bit-manipulation instructions.

« Inefficient unless the entire vector is kept in main
memory.
— Clustering reduces the size of bitmaps.

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

" Linked list
 Link together all the free disk

blocks, keeping a pointer to
the first free blocks.

« To traverse the list, we must
read each block, but it's not
a frequent action.

« The FAT method incorporates
free-block accounting into
the allocation data structure.

free-space list head

28]29[J3o[|31[]

..

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

= Grouping
o Store the addresses of n free blocks in the first free

block.
« The addresses of a large number of free blocks can

be found quickly.

= Counting
« Keep the address of the free block and the number
of free contiguous blocks.
« The length of the list becomes shorter and the count

Is generally greater than 1.
— Several contiguous blocks may be allocated or freed
simultaneously.

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

" File system consistency

 File system can be left in an inconsistent state if
cached blocks are not written out due to the system
crash.

o It is especially critical if some of those blocks are i-
node blocks, directory blocks, or blocks containing
the free list.

« Most systems have a utility program that checks file
system consistency

— Windows: scandisk
— UNIX: fsck

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

y (2)

= fsck: checking blocks

« Reads all the i-nodes and mark used blocks.
« Examines the free list and mark free blocks.

Missing block

Consistent -- add it to the free list

0O 1 2 3 4 5 6 7 0O 1 2 3 4 5 6 7

Blocks in use 111{0|1|0j1|1]|1 111{0{1|0(1(1|1
Free blocks 0{0(1(0(1|0|0]|0 0|0{0(0(1|0|0]|0
Duplicated free block Duplicated data block

-- rebuild the free list -- allocate a new block and copy

0O 1 2 3 4 5 6 7 0O 1 2 3 4 5 6 7

Blocks in use 111{0|1|0j1(1]|1 111{0{1|0(2(1|1
Free blocks 0[{0(1(0(2]|0]|0]|0 0O0|O0(1(0(1(0|0]|0

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

= fsck: checking directories

« Recursively descends the tree from the root directory,
counting the number of links for each file.

« Compare these numbers with the link counts stored
In the I-nodes.

e Force the link count in the i-node to the actual
number of directory entries.

i-node count
1 1 i-node #5 i-node #12
5 2
12 4 count=3 count=2

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

s ——
— e E—

= Journaling file systems

« Fsck'ing takes a long time, which makes the file system restart
slow in the event of system crash.

« Record a log, or journal, of changes made to files and
directories to a separate location. (preferably a separate disk).

o If a crash occurs, the journal can be used to undo any partially
completed tasks that would leave the file system in an
Inconsistent state.

« IBM JFS for AIX, Linux
Veritas VxFS for Solaris, HP-UX, Unixware, etc.
SGI XFS for IRIX, Linux
Reiserfs, ext3 for Linux

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

= Block size

 Disk block size vs. file system block size
« The median file size in UNIX is about 1KB.

1000 |- ——————— e ——— — — — =8
Disk space utilization \\
©o 800 -
@
)
M
X 600 -
2
L)
s 400
T
(]
200
Data rate
0 .
O 128 256 512 1K 2K

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

80

60

40

20

Disk space utilization

(percent)

= Buffer cache

« Applications exhibit significant locality for reading and writing
files.

 Idea: cache file blocks in memory to capture locality in buffer
cache (or buffer cache).
— Cache is system wide, used and shared by all processes.
— Reading from the cache makes a disk perform like memory.
— Even a 4MB cache can be very effective.
» Issues
— The buffer cache competes with VM.
— Live VM, it has limited size.
— Need replacement algorithms again.

(References are relatively infrequent, so it is feasible to keep all the
blocks in exact LRU order)

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

= Read ahead

« File system predicts that the process will request next
block.
— File system goes ahead and requests it from the disk.

— This can happen while the process is computing on previous
block, overlapping 1/O with execution.

— When the process requests block, it will be in cache.

« Compliments the disk cache, which also is doing read
ahead.

« Very effective for sequentially accessed files.

 File systems try to prevent blocks from being
scattered across the disk during allocation or by
restructuring periodically.

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

