
Fil S t I t lFil S t I t lFile System InternalsFile System Internals

Jin-Soo Kim (jinsookim@skku.edu)Jin Soo Kim (jinsookim@skku.edu)
Computer Systems Laboratory

Sungkyunkwan University
htt // l kk dhttp://csl.skku.edu

Today’s TopicsToday’s TopicsToday s TopicsToday s Topics
File system implementationy p
• File descriptor table, File table
• Virtual file systemy

File system design issuesFile system design issues
• Directory implementation: filename metadata
• Allocation: metadata a set of data blocks• Allocation: metadata a set of data blocks

• Reliability issues• Reliability issues
• Performance issues

2CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

OverviewOverviewOverviewOverview
User’s view on file systems: y
• How files are named?
• What operations are allowed on them?p
• What the directory tree looks like?

Implementor’s view on file systems:
H fil d di t i t d?• How files and directories are stored?

• How disk space is managed?
H t k thi k ffi i tl d li bl ?• How to make everything work efficiently and reliably?

3CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

Disk LayoutDisk LayoutDisk LayoutDisk Layout

boot block

super block : fs metadata
(type # blocks etc)

Master Boot Record
boot code

partition table

p

bitmaps

i‐nodes

(type, # blocks, etc.)
: data structures for
free space mgmt.

: file metadata

Partition 1
(active)

i‐nodes

root dirFS‐
dependent

: file metadata

Partition 2 files
&

Partition 3
directories

4CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

In-memory StructuresIn-memory StructuresIn memory StructuresIn memory Structures

process A

file table
(system‐wide
open‐file table)

in‐memory
partition table

count
offset

file attributes

p

directory cache

per‐process
file descriptor table

(per process open file table)

directory cache

process B

(per‐process open‐file table)

buffer cache

5CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

File System InternalsFile System InternalsFile System InternalsFile System Internals

S t ll i t f

Virtual File System (VFS)

System call interface

minix nfs ext2 dosfs … mmfs procfs

buffer cache
File SystemFile System

device driver

6CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

VFS (1)VFS (1)VFS (1)VFS (1)
Virtual File Systemy
• Manages kernel-level file abstractions in one format

for all file systems.
• Receives system call requests from user-level (e.g.,

open, write, stat, etc.)
• Interacts with a specific file system based on mount

point traversal.
• Receives requests from other parts of the kernel,

mostly from memory management.
T l t fil d i t t VFS d t t t (h• Translates file descriptors to VFS data structures (such
as vnode).

7CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

VFS (2)VFS (2)VFS (2)VFS (2)
Linux: VFS common file model
• The superblock object

– stores information concerning a mounted file system.

Th i d bj t• The inode object
– stores general information about a specific file.

• The file object• The file object
– stores information about the interaction between an open

file and a process.

• The dentry object
– stores information about the linking of a directory entry with

the corresponding file.p g

• In order to stick to the VFS common file model, in-
kernel structures may be constructed on the fly.

8CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

Directory Implementation (1)Directory Implementation (1)Directory Implementation (1)Directory Implementation (1)
Directory structure
• Table (fixed length entries)
• Linear list

– Simple to program, but time-consuming.
– Requires a linear search to find an entry.
– Entries may be sorted to decrease the average search timeEntries may be sorted to decrease the average search time

and to produce a sorted directory listing easily (e.g., using B-
tree).

• Hash table• Hash table
– Decreases the directory search time.
– A hash table is generally fixed size and the hash function

depends on that size. (need mechanisms for collisions)
– The number of files can be large:

(1) enlarge the hash table and remap.

9CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

(1) enlarge the hash table and remap.
(2) use a chained-overflow hash table.

Directory Implementation (2)Directory Implementation (2)Directory Implementation (2)Directory Implementation (2)
The location of metadata
• In the directory entry “foo” owner, size, ACL,

access time, location, …

• In the separate
“f ” owner

“bar” owner, size, ACL,

access time, location, …

t e sepa ate
data structure
(e.g., i-node)

“foo”

“bar” owner
size
ACL
access time

owner
size
ACL
access time
location, ……(e.g., i node)

• A hybrid approach

location, …

“foo” locationA hybrid approach foo location

owner, size, …

“bar” location

10CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

owner, size, …

Directory Implementation (3)Directory Implementation (3)Directory Implementation (3)Directory Implementation (3)
Supporting long file namespp g g

11CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

Allocation (1)Allocation (1)Allocation (1)Allocation (1)
Contiguous allocationg
• A file occupies a set

of contiguous blocks g
on the disk.

• Used by IBM VM/CMS

12CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

Allocation (2)Allocation (2)Allocation (2)Allocation (2)
Contiguous allocation (cont’d)g
• Advantages

– The number of disk seeks is minimal.
– Directory entries can be simple:

<file name, starting disk block, length, etc.>

Di d t• Disadvantages
– Requires a dynamic storage allocation: First / best fit.
– External fragmentation: may require a compaction– External fragmentation: may require a compaction.
– The file size is hard to predict and varying over time.

• Feasible and widely used for CD-ROMSeas b e a d de y used o C O S
– All the file sizes are known in advance.
– Files will never change during subsequent use.

13CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

Allocation (3)Allocation (3)Allocation (3)Allocation (3)
Modified contiguous allocationg
• A contiguous chunk of space is allocated initially.

– When the amount is not large enough, another chunk of a
contiguous space (an extent) is added.

• Advantages
Still th di t t b i l– Still the directory entry can be simple.
<name, starting disk block, length, link to the extent>

• Disadvantages• Disadvantages
– Internal fragmentation: if the extents are too large.
– External fragmentation: if we allow varying-sized extents.g y g

• Used by Veritas File System (VxFS).

14CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

Allocation (4)Allocation (4)Allocation (4)Allocation (4)
Linked allocation
• Each file is a linked

list of disk blocks.

15CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

Allocation (5)Allocation (5)Allocation (5)Allocation (5)
Linked allocation (cont’d)
• Advantages

– Directory entries are simple:
<fil t ti bl k di bl k t ><file name, starting block, ending block, etc.>

– No external fragmentation: the disk blocks may be scattered
anywhere on the disk.

– A file can continue to grow as long as free blocks are
available.

• DisadvantagesDisadvantages
– It can be used only for sequentially accessed files.
– Space overhead for maintaining pointers to the next disk

blockblock.
– The amount of data storage in a block is no longer a power

of two because the pointer takes up a few bytes.

16CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

– Fragile: a pointer can be lost or damaged.

Allocation (6)Allocation (6)Allocation (6)Allocation (6)
Linked allocation using clustersg
• Collect blocks into multiples (clusters) and allocate

the clusters to files.
– e.g., 4 blocks / 1 cluster

• Advantages
– The logical-to-physical block mapping remains simple.
– Improves disk throughput (fewer disk seeks)

Reduced space overhead for pointers– Reduced space overhead for pointers.

• Disadvantages
– Internal fragmentationInternal fragmentation

17CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

Allocation (7)Allocation (7)Allocation (7)Allocation (7)
Linked allocation using a FATg
• A section of disk at the beginning of each partition is

set aside to contain a file allocation table (FAT).
• FAT should be cached

to minimize disk seeks.
– Space overhead can be

substantial.

• Random access time is
improved.

• Used by MS-DOS, OS/2
– cf. FAT-16: 2GB limitation

ith 32KB bl k i

18CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

with 32KB block size

Allocation (8)Allocation (8)Allocation (8)Allocation (8)
Indexed allocation
• Bring all the pointers together into one location

(index block or i-node)
• Each file has its own index block.

19CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

Allocation (9)Allocation (9)Allocation (9)Allocation (9)
Indexed allocation (cont’d)
• Advantages

– Supports direct access, without suffering from external
fragmentation.

– I-node need only be in memory when the corresponding
file is openfile is open.

• Disadvantages
– Space overhead for indexes:p

(1) Linked scheme: link several index blocks
(2) Multilevel index blocks
(3) Combined scheme: UNIX

- 12 direct blocks, single indirect block,
double indirect block triple indirect block

20CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

double indirect block, triple indirect block

Free Space Management (1)Free Space Management (1)Free Space Management (1)Free Space Management (1)
Bitmap or bit vectorp
• Each block is represented by 1 bit.

– 1 = free, 0 = allocated

• Simple and efficient in finding the first free block.
– May be accelerated by CPU’s bit-manipulation instructions.

• Inefficient unless the entire vector is kept in main
memory.

Cl i d h i f bi– Clustering reduces the size of bitmaps.

21CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

Free Space Management (2)Free Space Management (2)Free Space Management (2)Free Space Management (2)
Linked list
• Link together all the free disk

blocks, keeping a pointer to
the first free blocks.

• To traverse the list, we must
d h bl k b i ’read each block, but it’s not

a frequent action.
Th FAT th d i t• The FAT method incorporates
free-block accounting into
the allocation data structurethe allocation data structure.

22CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

Free Space Management (3)Free Space Management (3)Free Space Management (3)Free Space Management (3)
Groupingp g
• Store the addresses of n free blocks in the first free

block.
• The addresses of a large number of free blocks can

be found quickly.

Counting
• Keep the address of the free block and the number p

of free contiguous blocks.
• The length of the list becomes shorter and the count

is generally greater than 1.
– Several contiguous blocks may be allocated or freed

simultaneously

23CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

simultaneously.

Reliability (1)Reliability (1)Reliability (1)Reliability (1)
File system consistencyy y
• File system can be left in an inconsistent state if

cached blocks are not written out due to the system
crash.

• It is especially critical if some of those blocks are i-
d bl k di bl k bl k i inode blocks, directory blocks, or blocks containing

the free list.
M t t h tilit th t h k fil• Most systems have a utility program that checks file
system consistency

Windows: scandisk– Windows: scandisk
– UNIX: fsck

24CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

Reliability (2)Reliability (2)Reliability (2)Reliability (2)
fsck: checking blocksg
• Reads all the i-nodes and mark used blocks.
• Examines the free list and mark free blocks.

Consistent Missing block
‐‐ add it to the free list

Blocks in use

Free blocks

1 1 0 1 0 1 1 1

0 0 1 0 1 0 0 0

0 1 2 3 4 5 6 7

1 1 0 1 0 1 1 1

0 0 0 0 1 0 0 0

0 1 2 3 4 5 6 7

Free blocks 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0

Duplicated free block
‐‐ rebuild the free list

Duplicated data block
‐‐ allocate a new block and copy

1 1 0 1 0 1 1 1

0 0 1 0 2 0 0 0

0 1 2 3 4 5 6 7

Blocks in use

Free blocks

1 1 0 1 0 2 1 1

0 0 1 0 1 0 0 0

0 1 2 3 4 5 6 7

25CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

0 0 1 0 2 0 0 0Free blocks 0 0 1 0 1 0 0 0

Reliability (3)Reliability (3)Reliability (3)Reliability (3)
fsck: checking directoriesg
• Recursively descends the tree from the root directory,

counting the number of links for each file.
• Compare these numbers with the link counts stored

in the i-nodes.
• Force the link count in the i-node to the actual

number of directory entries.

1 1
5 2

i‐node count
i‐node #5 i‐node #12

5 2
12 4
…… ……

…
count=3

…

…
count=2

…

26CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

Reliability (4)Reliability (4)Reliability (4)Reliability (4)
Journaling file systems
• Fsck’ing takes a long time, which makes the file system restart

slow in the event of system crash.
• Record a log or journal of changes made to files and• Record a log, or journal, of changes made to files and

directories to a separate location. (preferably a separate disk).
• If a crash occurs, the journal can be used to undo any partially

completed tasks that would leave the file system in an
inconsistent state.

• IBM JFS for AIX, LinuxIBM JFS for AIX, Linux
Veritas VxFS for Solaris, HP-UX, Unixware, etc.
SGI XFS for IRIX, Linux
Reiserfs, ext3 for Linux

27CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

Performance (1)Performance (1)Performance (1)Performance (1)
Block size
• Disk block size vs. file system block size
• The median file size in UNIX is about 1KB.

100

28CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

Block size (All files are 2KB)

Performance (2)Performance (2)Performance (2)Performance (2)
Buffer cache
• Applications exhibit significant locality for reading and writing

files.
• Idea: cache file blocks in memory to capture locality in buffer• Idea: cache file blocks in memory to capture locality in buffer

cache (or buffer cache).
– Cache is system wide, used and shared by all processes.
– Reading from the cache makes a disk perform like memory.
– Even a 4MB cache can be very effective.

• IssuesIssues
– The buffer cache competes with VM.
– Live VM, it has limited size.

d l l i h i– Need replacement algorithms again.
(References are relatively infrequent, so it is feasible to keep all the
blocks in exact LRU order)

29CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

Performance (3)Performance (3)Performance (3)Performance (3)
Read ahead
• File system predicts that the process will request next

block.
Fil t h d d t it f th di k– File system goes ahead and requests it from the disk.

– This can happen while the process is computing on previous
block, overlapping I/O with execution.

– When the process requests block, it will be in cache.

• Compliments the disk cache, which also is doing read
aheadahead.

• Very effective for sequentially accessed files.
• File systems try to prevent blocks from beingFile systems try to prevent blocks from being

scattered across the disk during allocation or by
restructuring periodically.

30CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

