
A hit t l S t A hit t l S t Architectural Support
for Operating Systems
Architectural Support

for Operating Systemsfor Operating Systemsfor Operating Systems

Jin-Soo Kim (jinsookim@skku.edu)Jin Soo Kim (jinsookim@skku.edu)
Computer Systems Laboratory

Sungkyunkwan University
htt // l kk dhttp://csl.skku.edu

Today’s TopicsToday’s TopicsToday s TopicsToday s Topics

Basic computer system architecture

Interaction between OS and architecture

Architectural support for OSpp

2CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

Computer Systems (1)Computer Systems (1)Computer Systems (1) Computer Systems (1)
Computer system organizationp y g

3CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

Computer Systems (2)Computer Systems (2)Computer Systems (2)Computer Systems (2)
Characteristics
• I/O devices and CPU can execute concurrently
• Each device controller is in charge of a particular g p

device type
• Each device controller has a local buffer
• CPU moves data from/to main memory to/from local

buffers
• I/O is from the device to local buffer of controller
• CPU issues specific commands to I/O devices
• CPU should be able to know whether the issued

command has been completed or not

4CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

OS and ArchitectureOS and ArchitectureOS and ArchitectureOS and Architecture
Mutual interaction
• The functionality of an OS is limited by architectural

features.
– Multiprocessing on DOS/8086?

• The structure of an OS can be simplified by
hi larchitectural support.

– Interrupt, DMA, etc.

M t i t OS’ d l d ith th• Most proprietary OS’s were developed with the
certain architecture in mind.
– SunOS/Solaris for SPARC architectureSunOS/Solaris for SPARC architecture
– IBM AIX for Power/PowerPC architecture
– HP-UX for PA-RISC architecture

5CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

– ...

Interrupts (1)Interrupts (1)Interrupts (1)Interrupts (1)
How does the kernel notice an I/O has
finished?
• Pollingg
• Hardware interrupt

6CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

Interrupts (2)Interrupts (2)Interrupts (2)Interrupts (2)
Interrupt handlingp g
• Preserves the state of the CPU

– In a fixed location
– In a location indexed by the device

number
On the system stack– On the system stack

• Determines the type
– PollingPolling
– Vectored interrupt system

• Transfers control to the interrupt p
service routine (ISR) or interrupt
handler

7CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

Exceptions (1)Exceptions (1)Exceptions (1)Exceptions (1)
Interruptsp
• Generated by hardware devices

– Triggered by a signal in INTR or NMI pins (x86)

• Asynchronous

Exceptions
• Generated by software executing instructionsGenerated by software executing instructions

– INT instruction in x86

• Synchronousy
• Exception handling is same as interrupt handling

8CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

Exceptions (2)Exceptions (2)Exceptions (2)Exceptions (2)
Further classification of exceptionsp
• Traps

– Intentional
– System calls, breakpoint traps, special instructions, ...
– Return control to “next” instruction

F l• Faults
– Unintentional but possibly recoverable

Page faults (recoverable) protection faults (unrecoverable)– Page faults (recoverable), protection faults (unrecoverable), ...
– Either re-execute faulting (“current”) instruction or abort

• AbortsAborts
– Unintentional and unrecoverable
– Parity error, machine check, ...

9CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

– Abort the current program

Exceptions (3)Exceptions (3)Exceptions (3)Exceptions (3)
System callsy
• Programming interface to the services provided by

OS
• e.g., system call sequence to copy the contents of

one file to another

10CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

Exceptions (4)Exceptions (4)Exceptions (4)Exceptions (4)
Important system calls (POSIX & Win32)p y ()

Create a new process
Wait for a process to exit
CreateProcess = fork + execve
T i t ti

CreateProcess
WaitForSingleObject
(none)
E itP

fork
waitpid
execve
it

Process

Management Terminate execution
Send a signal

ExitProcess
(none)

exit
kill

Management

Create a file or open an existing file
Close a file

CreateFile
CloseHandle

open
close Close a file

Read data from a file
Write data to a file
Move the file pointer

CloseHandle
ReadFile
WriteFile
SetFilePointer

close
read
write
lseek

File

Management

Get various file attributes
Change the file access permission

GetFileAttributesEx
(none)

stat
chmod

Create a new directory
Remove an empty directory

CreateDirectory
RemoveDirectory

mkdir
rmdir Remove an empty directory

Make a link to a file
Destroy an existing file
Mount a file system

RemoveDirectory
(none)
DeleteFile
(none)

rmdir
link
unlink
mount

File System

Management

11CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

Unmount a file system
Change the curent working directory

(none)
SetCurrentDirectory

umount
chdir

Exceptions (5)Exceptions (5)Exceptions (5)Exceptions (5)
Implementing system callsp g y

12CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

Exceptions (6)Exceptions (6)Exceptions (6)Exceptions (6)
Implementing system calls (cont’d)p g y ()

count = read (fd, buffer, nbytes);

13CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

DMA (1)DMA (1)DMA (1)DMA (1)
Data transfer modes in I/O
• Programmed I/O (PIO)

– CPU is involved in moving data between I/O devices and
memory

– By special I/O instructions vs. by memory-mapped I/O

DMA (Direct Memory Access)• DMA (Direct Memory Access)
– Used for high-speed I/O devices able to transmit information

at close to memory speedsy p
– Device controller transfers blocks of data from buffer storage

directly to main memory without CPU intervention.
O l i t t i t d bl k– Only an interrupt is generated per block.

14CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

DMA (2)DMA (2)DMA (2)DMA (2)
Processing I/O requestsg q

15CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

TimersTimersTimers Timers
How does the OS take control of CPU from
the running programs?
• Use a hardware timer that generates a periodic g p

interrupt
• The timer interrupt transfers control back to OS
• The OS preloads the timer with a time to interrupt.

– 10ms for Linux 2.4, 1ms for Linux 2.6
– (cf.) time slice

• The timer is privileged.
O l h OS l d i– Only the OS can load it

16CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

Protected InstructionsProtected InstructionsProtected InstructionsProtected Instructions
Protected or privileged instructionsp g
• Direct I/O access

– Use privileged instructions or memory-mapping

• Memory state management
– Page table updates, page table pointers
– TLB loads, etc.

• Setting special “mode bits”
• Halt instruction

17CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

OS Protection (1)OS Protection (1)OS Protection (1)OS Protection (1)
How does the processor know if a protected p p
instruction should be executed?
• The architecture must support at least two modes of pp

operation: kernel and user mode
– 4 privilege levels in IA-32: Ring 0 > 1 > 2 > 3

• Mode is set by a status bit in a protected processor
register

U i d OS i k l d– User programs in user mode, OS in kernel mode
– Current Privilege Level (CPL) in IA-32: CS register

• Protected instructions can only be executed in the• Protected instructions can only be executed in the
kernel mode

18CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

OS Protection (2)OS Protection (2)OS Protection (2)OS Protection (2)
Crossing protection boundariesg p
• User programs must call an OS to do something

privileged.
– OS defines a sequence of system calls

• There must be a system call instruction that:
– causes an exception, which invokes a kernel handler
– passes a parameter indicating which system call to invoke

saves caller’s state (registers mode bits) so they can be– saves caller s state (registers, mode bits) so they can be
restored

– OS must verify caller’s parameters (e.g. pointers)
– must provide a way to return to user mode when done.
– (cf.) INT 0x80 in Linux

19CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

OS Protection (3)OS Protection (3)OS Protection (3)OS Protection (3)
Making a system callg y
• System call changes mode to kernel
• Return from system call resets it to usery

20CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

Memory Protection (1)Memory Protection (1)Memory Protection (1)Memory Protection (1)
Requirementsq
• OS must protect user programs from each other

– Malicious users

• OS must also protect itself from user programs
– Integrity and security

21CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

Memory Protection (2)Memory Protection (2)Memory Protection (2)Memory Protection (2)
Simplest schemep
• Use base and limit registers
• Base and limit registers are loaded by OS before g y

starting a program

Prog A

Prog B
base reg

limit reg

Prog C

22CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

Memory Protection (3)Memory Protection (3)Memory Protection (3)Memory Protection (3)
MMU (Memory Management Unit)(y g)
• Memory management hardware provides more

sophisticated memory protection mechanisms
– base and limit registers
– page table pointers, page protection, TLBs

i t l– virtual memory
– segmentation

• Manipulation of memory management hardware are• Manipulation of memory management hardware are
protected (privileged) operations

23CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

SynchronizationSynchronizationSynchronizationSynchronization
Problems
• Interrupt can occur at any time and may interfere

with the interrupted code.
• OS must be able to synchronize concurrent processes.

Synchronization y
• Turn off/on interrupts
• Use a special atomic instructionsUse a special atomic instructions

– read-modify-write (e.g., INC, DEC)
– test-and-set
– LOCK prefix in IA32
– LL (Load Locked) & SC (Store Conditional) in MIPS

24CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

