Processes

Jin-Soo Kim (jinsookim@skku.edu)
Computer Systems Laboratory
Sungkyunkwan University
http://csl.skku.edu

Sk

UNIVERSITY

* What is the process?

* How to implement processes?

= Inter-Process Communication (IPC)

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

e e ———

* What is the process?

An instance of a program in execution.

An encapsulation of the flow of control in a program.
A dynamic and active entity.

The basic unit of execution and scheduling.

« A process is named using its process ID (PID).

Job, task, or sequential process

e A process includes:
— CPU contexts (registers)
— OS resources (memory, open files, etc.)
— Other information (PID, state, owner, etc.)

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

" Process in memory

D unused
read-only segment
(.init, .text, .rodata)

read/write segment T
i (.data, .bss) ~
run-time heap e
(managed by malloc)
brk — data
program

stack pointer —
user stack
(created at runtime)

. memory
kernel virtual memory ...
invisible to
(code, data, heap, stack)
OXFFFFFFFF user code

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

" Process hierarchy

« One process can create .
another process: parent-child $ cat filel | wc
relationship

« UNIX calls the hierarchy a
‘process group”

« Windows has no concept of

process hierarchy. @ Q

« Browsing a list of processes:
— ps in UNIX

— taskmgr (Task Manager) in
Windows

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

= Process creation events

« Calling a system call
— fork() in POSIX, CreateProcess() in Win32
— Shells or GUIs use this system call internally.

« System initialization

— init process
* Background processes
e Do not interact with users
e Daemons

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

= Resource sharing

« Parent may inherit all or a part of resources and
privileges for its children
— UNIX: User ID, open files, etc.

= Execution

« Parent may either wait for it to finish, or it may
continue in parallel.

" Address space

« Child duplicates the parent's address space or has a
program loaded into it.

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

= Process termination events
« Normal exit (voluntary)
« Error exit (voluntary)

 Fatal error (involuntary)
— Exceed allocated resources
— Segmentation fault
— Protection fault, etc.
 Killed by another process (involuntary)
— By receiving a signal

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

#include <sys/types.h>
#include <unistd.h>
int main()
{
int pid;
if ((pid = fork()) == 0)
/* child */
printf (“Child of %d is %d\n”,
getppid(), getpid());
else
/* parent */
printf (“I am %d. My child is %d\n”,
getpid(), pid);
}

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

% ./a.out
I am 31098. My child is 31099.
Child of 31098 is 31099.

% ./a.out
Child of 31100 is 31101.
I am 31100. My child is 31101.

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

int main()
{
while (1) {
char *cmd = read_command();
int pid;
if ((pid = fork()) == 0) {
/* Manipulate stdin/stdout/stderr for
pipes and redirections, etc. */
exec(cmd);
panic(“exec failed!”);
1} else {
wait (pid);
}
}
}

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

admitted interrupt exit

~ terminated

scheduler dispatch

I/O or event completion I/O or event wait

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

00
0:0
00
00
00
00
0:0
00
00
0:00
1] 0:00
i/ iinsoo—3]1 I

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

Runnable
Sleeping

Traced or
Stopped
Uninterruptible
Sleep

Zombie
High-priority task
Low-priority task
Session leader

In the foreground
process group
Multi-threaded

= PCB (Process Control Block)

« Each PCB represents a process.

« Contains all of the information about a process
— Process state
— Program counter
— CPU registers
— CPU scheduling information

P N VAR 2 e e Y N N N lu\ ~ 1mma~ o~ |Au\

- IVICIIIUI_y IIIdIIdgCIIIEIIL ITHOITTIAatiolrnl
— Accounting information
— I/0 status information, etc.

e task struct in Linux
— 1456 bytes as of Linux 2.4.18

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

Process management
Reqisters

Program counter
Program status word
Stack pointer

Process state

Priority

Scheduling parameters
Process ID

Parent process
Process group

Signals

Time when process started
CPU time used
Children’s CPU time
Time of next alarm

Memory management
Pointer to text segment
Pointer to data segment
Pointer to stack segment

File management
Root directory
Working directory
File descriptors
User ID

Group ID

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

* When a process is running:
o Its hardware state is inside the CPU:
PC, SP, registers

* When the OS stops running a process:
o [t saves the registers’ values in the PCB.

[J [J
roacracc 1N 'I'hn rimnniNnM
T VULLCID 111 LG TUllllinny

o It loads the hardware registers from the values in
that process’ PCB.

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

process P, operating system process P,

interrupt or system call

executing ﬂ /—l

save state into PCB,
. > idle
reload state from PCB, 1
ridle interrupt or system call executing
. 4 \ ¥ .
save state into PCB;
. > idle
reload state from PCB, J

executing I¥

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

= —

—es .

= Context switch (or process switch)

« The act of switching the CPU from one process to
another.

« Administrative overhead
— saving and loading registers and memory maps
— flushing and reloading the memory cache
— updating various tables and lists, etc.

« Context switch overhead is dependent on hardware
support.
— Multiple register sets in UltraSPARC.
— Advanced memory management techniques may require
extra data to be switched with each context.

« 100s or 1000s of switches/s typically.

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

Context Switch (3)

" Linux example
« Total 544,037,375 user ticks = 1511 hours = 63.0 days
« Total 930,566,190 context switches
« Roughly 86 context switches / sec (per CPU)

[0z:fuserdiin 39] cat fprocsstat

cpu_ 841312 ¢ 20 541514896 1126789 225
cpul H41 ad TUSHA0 2315138498 112075 220
intr 196298 1260008446 305 0111 5 2

1 0 578059669 00 0 OO

procs_blocked 0O
[0z: fuser/jinsoo—40] [

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

e e ———

= State queues

« The OS maintains a collection of queues that
represent the state of all processes in the system
— Job queue
— Ready queue
— Wait queue(s): there may be many wait queues, one for each
type of wait (device, timer, message, ...)
« Each PCB is queued onto a state queue according to
Its current state.

« As a process changes state, its PCB is migrated
between the various queues.

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

ready
queue

mag
tape
unit 0

mag
tape
unit 1

disk
unit 0

terminal
unit 0

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

queue header PCB, PCB,
head »
tail N registers registers
L 3 L]
° L[]
* 3
head +——=
tail 2
head ——=
o PCB, PCBg
/-J |
head 1
PCB;
head » - —
@l

" PCBs and state queues

« PCBs are data structures
— dynamically allocated inside OS memory

« When a process is created:
— OS allocates a PCB for it
— OS initializes PCB
— OS puts PCB on the correct queue

« As a process computes:
— OS moves its PCB from queue to queue

« When a process is terminated:
— OS deallocates its PCB

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

int fork()

= fork()

« Creates and initializes a new PCB
« Creates and initializes a new address space

* Initializes the address space with a copy of the entire
contents of the address space of the parent.

o Initializes the kernel resources to point to the
resources used by parent (e.g., open files)

 Places the PCB on the ready queue.

« Returns the child’s PID to the parent, and zero to the
child.

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

int exec (char *prog, char *argv[])

= exec()

Stops the current process

Loads the program “prog” into the process’ address
space.

Initializes hardware context and args for the new
program.

Places the PCB on the ready queue.
— Note: exec() does not create a new process.

What does it mean for exec() to return?

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

BOOL CreateProcess (char *prog, char *args, ..)

= CreateProcess()

Creates and initializes a new PCB

Creates and initializes a new address space

Lgids the program specified by “prog” into the
address space

Copies “args” into memory allocated in address space
Initializes the hardware context to start execution at
main

Places the PCB on the ready queue

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

= Very useful when the child...

e Is cooperating with the parent.
« relies upon the parent’s data to accomplish its task.
« Example: Web server

While (1) {
int sock = accept();
if ((pid = fork()) == 9) {
LAY e PN/ “/ 1

/* Handle client request */
1 else {
/* Close socket */

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

" Inside a machine
« Pipe
e FIFO
« Shared memory
« Sockets

m Arracc mn
n

ac
IVID 111I¢4 ll 2

o Sockets

« RPCs (Remote Procedure Calls)
e Java RMI (Remote Method Invocation)

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

= Plan

« We will use the Pintos educational operating system

— Developed by Stanford University
(Some source files are derived from code used in the MIT
OS course)

— A real, bootable OS for 80x86 architecture

— The original structure was inspired by the Nachos
educational OS (Java-based)

— Written in C language (with minimal assembly code)
 Platform: Linux + PC emulators (bochs or gemu)
« Group projects: in teams of 3 students
« More on Pintos will be coming up soon

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

s ——
— e E—

= Action items

« Form a project team
— We have 27 enrolled students, so there will be 9 teams

« Send me an e-mail by the next class including
— The name of your team
— The list of team members (name & e-mail address)

« Each student will be invited by the mailing list:
skku-pintos-project@googlegroups.com
— Project-related discussions will be done via this mailing list

— Once you accept the invitation, you can send e-mail to
everyone on the list

— http://groups.google.com/group/skku-pintos-project
« Prepare your own Linux platform

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

Pr e%(?,

= Lab session
« For project assignments, discussions, & demos

‘—/

\—o

12:00 - 13:00
13:00 — 14:00
14:00 — 15:00
15:00 - 16:00
16:00 - 17:00
17:00 — 18:00
18:00 — 19:00
19:00 — 20:00
20:00 — 21:00
21:00-22:00

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

