Synchronization ||

Jin-Soo Kim (jinsookim@skku.edu)
Computer Systems Laboratory
Sungkyunkwan University
http://csl.skku.edu

Sk

UNIVERSITY

= Spinlock is not enough
« What if a lock is held by others?

« What if a condition is not met inside the critical
section?

* Higher-level synchronization mechanisms

e SamanhnArac
¥ JICI1I ICIIJI IVITO

e Monitors
e Condition variables and mutex

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

s ——
— e E—

= Motivation
Spinlocks and disabling interrupts are useful only for very short
and simple critical sections.

— Wasteful otherwise

— These primitives are “primitive” — don't do anything besides mutual
exclusion.

Need higher-level synchronization primitives that
— Block waiters
— Leave interrupts enabled within the critical section
Two common high-level primitives:
— Semaphores: binary (mutex) and counting
— Monitors: mutexes and condition variables

We'll use our “atomic” locks as primitives to implement them.

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

= Semaphores

« A synchronization primitive higher level than locks.

 Invented by Dijkstra in 1968, as part of the THE OS.
« Does not require busy waiting.

« Manipulated atomically through two operations:
— Wait (S): decrement, block until semaphore is open
= P(), after Dutch word for test, also called down()
— Signal (S): increment, allow another to enter
= V(), after Dutch word for increment, also called up()

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

* Blocking in semaphores
« Each semaphore has an associated queue of processes/threads.

« When wait() is called by a thread,
— If semaphore is “open”, thread continues.
— If semaphore is “closed”, thread blocks, waits on queue.

« Signal() opens the semaphore.
— If thread(s) are waiting on a queue, one thread is unblocked.

— If no threads are on the queue, the signal is remembered for next
time a wait() is called.

« In other words, semaphore has history.
— The history is a counter.
— If counter falls below 0, then the semaphore is closed.
— wait() decreases the counter while signal() increases it.

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

=l

nting Semap

Impl

typedef struct {

int value;

struct process *L;
} semaphore;

void wait (semaphore S) { 1§
S.value--; . .
if (S.value < @) { wait() / signal()
add this process to S.L; ~ are critical sections!
block (); Hence, they must be
} T executed atomically
) w.r.t
void signal (semaphore S) { D e
S.value++; each other.
if (S.value <= 0) { .
remove a process P from S.L; HOW??
wakeup (P);

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

* Binary semaphore (a.k.a mutex)
« Guarantees mutually exclusive access to resource.
e Only one thread/process allowed entry at a time.
« Counter is initialized to 1.

" Counting semaphore
« Represents a resource with many units available.

« Allows threads/processes to enter as long as more
units are available.

e Counter is initialized to N (=units available).

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

* Producer/consumer problem

« There is a set of resource buffers shared by producer
and consumer.

e Producer inserts resources into the buffer.
— Output, disk blocks, memory pages, etc.

o« Consumer removes resources from the buffer.
— Whatever is generated by the producer

e Producer and consumer execute in different rates.
— No serialization of one behind the other
— Tasks are independent
— The buffer allows each to run without explicit handoff.

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

* No synchronization

Producer

{

void produce(data)

while (count==N);
buffer[in] = data;
in = (in+l1) % N;
count++;

int count;

struct item buffer[N];
int in, out;

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

Consumer

void consume(data)

{

while (counter==0);
data = buffer[out];
out = (out+l) % N;
count--;

| Buffer Problem

* Implementation with semaphores

Producer Semaphore Consumer
mutex = 1
empty = N;
void produce(data) full = O; void consume(data)
{ {
struct item buffer[N];
wait (empty); int in, out; wait (full);
wait (mutex); wait (mutex);

buffer[in] = data;
= (in+l1l) % N;

signal (mutex);

signal (full);

data = buffer[out];
out = (out+l) % N;
signal (mutex);
signal (empty);

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

-Writers Problem (

i

= Readers-Writers problem
« An object is shared among several threads.

« Some threads only read the object, others only write
it.

« We can allow multiple readers at a time.
« We can only allow one writer at a time.

* Implementation with semaphores
« readcount — # of threads reading object
« mutex — control access to readcount
« rw — exclusive writing or reading

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

-Writers Problem (

-

// number of readers

int readcount = 0;

// mutex for readcount
Semaphore mutex = 1;

// mutex for reading/writing
Semaphore rw = 1;

void Writer ()

{
wait (rw);
Write
signal (rw);
}

void Reader ()

{
wait (mutex);
readcount++;

if (readcount
wait (rw);

signal (mutex);

Read

wait (mutex);
readcount--;
if (readcount
signal (rw);
signal (mutex);

1)

0)

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

e e ———

= Note:

o If there is a writer
— The first reader blocks on rw.
— All other readers will then block on mutex.

« Once a writer exits, all readers can fall through.
— Which reader gets to go first?

« The last reader to exit signals waiting writer.
— Can new readers get in while writer is waiting?

« When writers exits, if there is both a reader and
writer waiting, which one goes next is up to
scheduler.

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

« Dijkstra, 1965.
* Life of a philosopher

— Repeat forever:
Thinking
Getting hungry
Getting two chopsticks

CAadim ~
EdLIIIg

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

= A simple solution

Semaphore chopstick[N]; // initialized to 1
void philosopher (int i)
{
while (1) {
think ();
wait (chopstick[i]);
wait (chopstick[(i+1l) % N];
eat ();
signal (chopstick[i]);
signal (chopstick[(i+1) % N];

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

nmm

h

= Deadlock-free version: starvation?

A
O
:'
So—
W
—’

Din

#define N 5 Semaphore mutex = 1;
#define L(1) ((i+N-1)%N) Semaphore s[N];
#define R(1) ((i+1)%N) int state[N];
void philosopher (int i) {
while (1) { void pickup (int i) {
think (); wait (mutex);
pickup (i); state[i] = HUNGRY;
eat(); test (i);
putdown (i); signal (mutex);
} wait (s[i]);
} }
void test (int i) { void putdown (int i) {
if (state[i]==HUNGRY && wait (mutex);
state[L(i)]!=EATING && state[i] = THINKING;
state[R(i)]!=EATING) { test (L(i));
state[i] = EATING; test (R(1));
signal (s[i]); signal (mutex);
} }

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

* Drawbacks
« They are essentially shared global variables.
— Can be accessed from anywhere (bad software engineering)

« There is no connection between the semaphore and
the data being controlled by it.

e Used for both critical sections (mutual exclusion) and
for coordination (scheduling).

« No control over their use, no guarantee of proper
usage.

* Thus, hard to use and prone to bugs

« Another approach: use programming language
support

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

= Monitor

« A programming language construct that supports controlled
access to shared data.

— Synchronization code added by compiler, enforced at runtime.

— Allows the safe sharing of an abstract data type among concurrent
processes.

« A monitor is a software module that encapsulates.
— shared data structures
— procedures that operate on the shared data.

— synchronization between concurrent processes that invoke those
procedures.

« Monitor protects the data from unstructured access.

— guarantees only access data through procedures, hence in legitimate
ways.

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

= Mutual exclusion

e Only one process can be executing inside at any time.
— Thus, synchronization implicitly associated with monitor

 If a second process tries to enter a monitor procedure, it blocks
until the first has left the monitor.
— More restrictive than semaphores.
— But easier to use most of the time.

= Condition variables

« Once inside, a process may discover it can't continue, and may
wish to sleep, or allow some other waiting process to continue.
« Condition variables are provided within monitor.
— Processes can wait or signal others to continue.
— Can only be accessed from inside monitor.

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

entry queue

shared data
waiting queue of processes
trying to enter the monitor

gueues associated with

X, y conditions y B

s at most one process
operations . . .
In monitor at a time

initialization
code

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

= Purpose
« provides a mechanism to wait for events.
(@ “rendezvous point”)

* Three operations:
e walt (¢
— release monitor lock, so somebody else can get in.
— wait for somebody else to signal condition.
— thus, condition variables have wait queues.
 signal (c)
— wake up at most one waiting process.
— if no waiting processes, signal is lost.
— this is different from semaphores: no history!
« broadcast (c)
— wake up all waiting processes.

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

Beunr% Buffer

1 1 W

Monitor bounded buffer {
buffer resources[N];
condition not_full, not empty;

procedure add_entry (resource x) {
while (array “resources” is full)

wait (not full);
add “x” to array “resources”;
signal (not_empty);
}

procedure remove_entry (resource *x) {
while (array “resources” is empty)
wait (not_empty);
*x = get resources from array “resources”
signal (not full);

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

= Hoare monitors:

« signal(c) immediately switches from the caller to a
waiting thread, blocking the caller.

— The condition that the waiter was anticipating is guaranteed
to hold when waiter executes.

— Signaler must restore monitor invariants before signaling.

* Mesa monitors:

« signal(c) places a waiter on the ready queue, but
signaler continues inside monitor.
— Condition is not necessarily true when waiter runs again.
— Being woken up is only a hint that something has changed.
— Must recheck conditional case.

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

=

= Comparison

« Usage:
Hoare monitors Mesa monitors
if (notReady) while (notReady)
wait (c); wait (c);

« Mesa monitors easier to use.
— more efficient
— fewer switches
— directly supports broadcast()
« Hoare monitors leave less to chance.
— when wake up, condition guaranteed to be what you expect.

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

= Hoare monitors

Semaphore mutex = 1;

Semaphore next = 0;

int next_count = ©;

struct condition {
Semaphore sem;
int count;

} x = {o, 0};

procedure F () {
wait (mutex);

Body of F

if (next_count)
signal (next);
else
signal (mutex);

procedure cond wait (x)
X.count++;
if (next_count)
signal (next);
else
signal (mutex);
wait (x.sem);
X.count--;

}

procedure cond _signal (x)
if (x.count) {
next count++;
signal (x.sem);
wait (next);
next count--;

{

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

= Comparison

« Condition variables do not have any history, but
semaphores do.
— On a condition variable signal(), if no one is waiting , the
signal is a no-op.
(If a thread then does a condition variable wait(), it waits.)

— On a semaphore signal(), if no one is waiting, the value of
the semaphore is increased.

(If a thread then does a semaphore wait(), the value is
decreased and the thread continues.)

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

Variables and Mutex

= Yet another construct:

e Condition variables can be also used without
monitors in conjunction with mutexes.

« Think of a monitor as a language feature
— Under the covers, compiler knows about monitors.

— Compiler inserts a mutex to control entry and exit of
processes to the monitor's procedures.

— But can be done anywhere in procedure, at finer granularity.

« With condition variables, the module methods may
wait and signal on independent conditions.

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

pthread mutex_ t mutex;
pthread cond t not full, not empty;
buffer resources[N];
void add_entry (resource x) {
pthread mutex lock (&mutex);
while (array “resources” is full)
pthread cond wait (¬ full, &mutex);
add “x” to array “resources”;
pthread cond signal (¬ _empty);
pthread mutex unlock (&mutex);
}
void remove_entry (resource *x) {
pthread mutex lock (&mutex);
while (array “resources” is empty)
pthread cond wait (¬ _empty, &mutex);
*x = get resource from array “resources”
pthread cond signal (¬ full);
pthread mutex unlock (&mutex);

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

* Disabling interrupts

= Spinlocks
« Busy waiting

= Semaphores
« Binary semaphore = mutex (= lock)
« Counting semaphore

= Monitors
« Language construct with condition variables

= Mutex + Condition variables
e Pthreads

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

