
I t d ti t Pi tI t d ti t Pi tIntroduction to PintosIntroduction to Pintos

Jin-Soo Kim (jinsookim@skku.edu)Jin Soo Kim (jinsookim@skku.edu)
Computer Systems Laboratory

Sungkyunkwan University
htt // l kk dhttp://csl.skku.edu

Welcome to Pintos!Welcome to Pintos!Welcome to Pintos!Welcome to Pintos!
What is Pintos?
• An instructional operating system
• Developed by Ben Pfaff @ Stanford U.p y @
• A real, bootable OS for 80x86 architecture

– Run on a regular IBM-compatible PC
or an x86 simulator

• The original structure and form was
i i d b th N h i t ti linspired by the Nachos instructional
OS from UC Berkeley (Java-based)

• A few of the sources files are derived from code used• A few of the sources files are derived from code used
in the MIT’s advanced operating systems course

• Written in C language (with minimal assembly code)

2CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

• Written in C language (with minimal assembly code)

Bochs (1)Bochs (1)Bochs (1)Bochs (1)
What is Bochs?
• Open-source IA-32 emulator
• Simulates a complete Intel x86 p

computer in software
– Interprets every instruction from power-up to reboot
– Has device models for all of the standard PC peripherals:

keyboard, mouse, VGA card/monitor, disks, timer, network, …
– Supports many different host platforms:Supports many different host platforms:

x86, PowerPC, Alpha, Sun, and MIPS

• Runs most popular x86 Oses:
– Windows 95/98/NT/2000/XP/Vista, Linux, BSDs, ...

• Written in C++

3CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

• Emulation, not virtualization

Bochs (2)Bochs (2)Bochs (2)Bochs (2)
Linux + Bochs
• We will run Pintos using Bochs on Linux
• Bochs makes it easy to develop and debug Pintos y p g

projects

4CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

Setting Up (1)Setting Up (1)Setting Up (1)Setting Up (1)
Install Linux distribution on your machiney
• Debian, Fedora, Ubuntu, or whatever you like

I t ll d l t t lInstall development tools
• Including gcc, make, perl, gdb, and so on
• GCC >= 4.0, binutils >= 2.13

Install development libraries (for Bochs)Install development libraries, (for Bochs)
• Install X windows development libraries, if needed

– For Debian install xorg-dev packageFor Debian, install xorg dev package

• Install curses development libraries, if needed
– For Debian, install libncurses5-dev package

5CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

o eb a , s a b cu ses5 de pac age

• There could be additional libraries to install

Setting Up (2)Setting Up (2)Setting Up (2)Setting Up (2)
Install Pintos
• Download the Pintos package (pintos.tar.gz)

– Available from
http://csl.skku.edu/uploads/CSE3008F09/pintos.tar.gz

– Use this version only

• Untar Pintos
$ tar xvzf pintos.tar.gz

• Build Pintos
$ cd pintos/src/threads$ p / /
$ make

– This will create the kernel image (kernel.bin) and the final OS
di k i (d k l d bi k l bi) i /b ild

6CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

disk image (os.dsk = loader.bin + kernel.bin) in ./build

Setting Up (3)Setting Up (3)Setting Up (3)Setting Up (3)
Install Bochs
• You need Bochs to run Pintos
• Get the source code from http://bochs.sourceforge.netp // g

– Make sure you are downloading v2.2.6 (bochs‐2.2.6.tar.gz)
– You don’t have to untar the source code

• Install Bochs
– Must patch the Bochs source code for Pintos

(Patches are available in pintos/src/misc)(Patches are available in pintos/src/misc)
– Use the installation script provided by Pintos

(pintos/src/misc/bochs‐2.2.6‐build.sh)
– The script will untar, patch, configure, compile, and install

Bochs
You need to be a superuser (root) to install Bochs in the

7CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

– You need to be a superuser (root) to install Bochs in the
system directory (e.g., /usr/local)

Setting Up (4)Setting Up (4)Setting Up (4)Setting Up (4)
Install Bochs (cont’d)()
• Running the script:

8CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

Setting Up (5)Setting Up (5)Setting Up (5)Setting Up (5)
Test Bochs
$ bochs ; Put $DSTDIR/bin into your PATH

9CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

Setting Up (6)Setting Up (6)Setting Up (6)Setting Up (6)
Run Pintos
$ cd pintos/src/threads
$../utils/pintos run alarm‐multiple$ p p

10CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

A Tour of Pintos (1)A Tour of Pintos (1)A Tour of Pintos (1)A Tour of Pintos (1)
Projectsj
• Project 1: Threads ;

– pintos/src/threads

• Project 2: User programs
– pintos/src/userprog

• Project 3: Virtual memory
– pintos/src/vm

• Project 4: File system
– pintos/src/filesys

• Use “make” command in each of project directories

11CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

A Tour of Pintos (2)A Tour of Pintos (2)A Tour of Pintos (2)A Tour of Pintos (2)
Interesting files in the ./build directoryg y
• kernel.o:

– The object file for the entire kernel
– Used for debugging

• kernel.bin:
– The memory image of the kernel

• loader.bin:
Th i f h k l l d (512 b)– The memory image of the kernel loader (512 bytes)

– Reads the kernel from disk into memory and starts it up

• os dsk:• os.dsk:
– Disk image for the kernel (loader.bin + kernel.bin)
– Used as a “virtual disk” by the simulator

12CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

Used as a ua d s by e s u a o

A Tour of Pintos (3)A Tour of Pintos (3)A Tour of Pintos (3)A Tour of Pintos (3)
Running Pintosg
• Add “pintos/src/utils” to $PATH and run “pintos”

$ export PATH=“/home/jinsoo/pintos/src/utils:$PATH”$ p / /j /p / / $

$ pintos [option] ‐‐ [argument]

• OptionOpt o
– Configure the simulator or the virtual hardware

• Argumentg
– Each argument is passed to the Pintos kernel verbatim
– ‘pintos run alarm-multiple’ instructs the kernel to run alarm-

lti lmultiple

• Pintos script
Parse command line find disks prepare arguments run the

13CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

– Parse command line, find disks, prepare arguments, run the
simulator (Bochs)

A Tour of Pintos (4)A Tour of Pintos (4)A Tour of Pintos (4)A Tour of Pintos (4)
Project testingj g
$ make check
$ make grade$ g

14CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

A Tour of Pintos (5)A Tour of Pintos (5)A Tour of Pintos (5)A Tour of Pintos (5)
Useful tools
• gdb: The GNU project debugger

– Allows to see what’s going on inside another program while
it executes

– Refer to Appendix E.5: GDB

Tags• Tags
– An index to the functions and global variables
– Powerful when it is combined with vi editorPowerful when it is combined with vi editor
– Refer to Appendix F.1: Tags

• CVS: Version-control systemy
– Useful for version controls and concurrent development
– Refer to Appendix F.3: CVS

15CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

A Tour of Pintos (6)A Tour of Pintos (6)A Tour of Pintos (6)A Tour of Pintos (6)
Tipsp
• Read the project specification carefully
• Before starting your project, read the document g y p j ,

template too!
– It may give you useful tips

• Study the test cases in pintos/src/tests used by
“make check”

O C f h (*)– One C program for each test case (*.c)
– One Perl script to check whether your implementation is

correct or not (*.ck)()
– Study the correct output stored in the perl script

• Do it incrementally

16CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

– Otherwise, it can be totally messed up

S t St tS t St tSystem StartupSystem Startup

Jin-Soo Kim (jinsookim@skku.edu)Jin Soo Kim (jinsookim@skku.edu)
Computer Systems Laboratory

Sungkyunkwan University
htt // l kk dhttp://csl.skku.edu

System Startup (1)System Startup (1)System Startup (1)System Startup (1)
Overview
• BIOS
• Boot loader
• Kernel initialization

18CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

System Startup (2)System Startup (2)System Startup (2)System Startup (2)
The BIOS
• The CPU initializes itself and then begins to execute

an instruction at a fixed location (0xffff fff0)
• Those instructions are supplied from ROM and make

the CPU jump into the BIOS
• The BIOS finds a boot device and loads its first sector

into memory
St ti f h i l dd– Starting from physical address 0x0000 7c00

– The first sector contains the Pintos’ loader
(threads/loader.S)(/)

• The BIOS transfers control to the loader

19CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

System Startup (3)System Startup (3)System Startup (3)System Startup (3)
The boot loader
• Enables memory accesses beyond first 1MB

– For historical reasons, this initialization is required

• Asks the BIOS for the PC’s memory size
– Again for historical reasons, the function we use can only

d t t t 64MB f RAM (Thi i th li it th t Pi tdetect up to 64MB of RAM (This is the limit that Pintos can
support)

– The memory size is stored in the loader and the kernel can y
read the information after it boots

• Creates a basic page table
– This page table maps the 64MB at the base (starting at

virtual address 0) directly to identical physical address
– It also maps the same physical memory starting at virtual

20CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

It also maps the same physical memory starting at virtual
address LOADER_PHYS_BASE (0xc000 0000)

System Startup (4)System Startup (4)System Startup (4)System Startup (4)
The boot loader (cont’d)()
• Turns on protected mode and paging

– Interrupts are still disabled

• Loads the kernel from disk
– Assumptions:

» The kernel is stored starting from the second sector of
the first IDE disk

» The BIOS has already set up the IDE controller» The BIOS has already set up the IDE controller
– The loader loads the kernel starting at physical address

LOADER_KERN_BASE (0x0010 0000)

• Jumps to the kernel entry point
– main() in src/threads/init.c

S t i th li k i t (th d /k l ld S)

21CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

– Set up using the linker script (threads/kernel.lds.S)

System Startup (5)System Startup (5)System Startup (5)System Startup (5)
Kernel initialization
• Clears BSS and get machine’s RAM size
• Initializes threads systemy
• Initializes VGA, serial port, and console

– To print a startup message to the console

• Greets user and reading kernel command line
– “Kernel command line: “

• Initializes memory system
• Initializes random number generator and interrupt

system
• Starts thread scheduler and enables interrupts

22CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

• Initializes file system

P j t P li iP j t P li iProject PoliciesProject Policies

Jin-Soo Kim (jinsookim@skku.edu)Jin Soo Kim (jinsookim@skku.edu)
Computer Systems Laboratory

Sungkyunkwan University
htt // l kk dhttp://csl.skku.edu

Project ScheduleProject ScheduleProject ScheduleProject Schedule
Project 0j
• Warming-up project (1 week, ~9/30)

P j t 1Project 1
• Threads (2 weeks, ~10/15)

Project 2
• User programs (3 weeks ~11/5)• User programs (3 weeks, ~11/5)

Project 3j
• Virtual memory (5 weeks, ~12/10)

Thi h d l i bj t t h

24CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

This schedule is subject to change

Project Policy (1)Project Policy (1)Project Policy (1)Project Policy (1)
Team project (except Project 0)p j (p j)
• Three members in a team
• You must work in teams in the “real world”
• Communicate with colleagues (team members)

– Communication problems are natural
– It’s a good chance to get to know each other
– How to divide work among team members?

Wh h d ?– What have you done?
– What answers you need from others?
– You must document your work!You must document your work!
– You should clearly state the contribution of each team

member in your project report
(A d thi h ld b d t b)

25CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

(And this should be agreed upon among team members)

Project Policy (2)Project Policy (2)Project Policy (2)Project Policy (2)
Working in teamsg
• Do not try to merge all the codes developed

independently by each team member just before the
deadline

• Often two changes conflict with each other, requiring
l f d b ilots of debugging

• Instead, integrate your team’s changes early and
ftoften.

• Understand your requirement first. And then design
well before the actual implementationwell before the actual implementation

This will save your time considerably.
• Refer to 2 1 4: Development Suggestions

26CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

• Refer to 2.1.4: Development Suggestions

Project Policy (3)Project Policy (3)Project Policy (3)Project Policy (3)
Late policyp y
• Each team has 5 “slip” days
• 20% off per day after slip days exhaustedp y p y
• No advantage on remaining slip days
• Save your slip days for rainy days, as the project is Sa e you s p days o a y days, as t e p oject s

getting harder and harder

• For Project 0, there is no slip day.

27CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

Project Policy (4)Project Policy (4)Project Policy (4)Project Policy (4)
Cheating policyg p y
• “Copying all or part of another person’s work, or

using reference material not specifically allowed, are
forms of cheating and will not be tolerated.”

• For a student involved in an incident of cheating, the
f ll i li ill lfollowing policy will apply:
– You will get 0 points in the particular project and the final

grade will be lowered by one grade (e g B+ B)grade will be lowered by one grade (e.g., B+ B)
– For serious offenses, you will get an F grade and this will be

notified to the department chair

• Share useful information: helping others use systems
or tools, helping them with high-level designs or
deb g their code is NOT cheating!

28CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

debug their code is NOT cheating!

Project Grading (1)Project Grading (1)Project Grading (1)Project Grading (1)
Presentations in the Lab session (bonus)()
Functionality (70%)
$ make check$ make check
$ make grade

Design & documentation (30%)Design & documentation (30%)
• Source code

D i d t• Design document
– Data structure, Algorithm, Synchronization, Rationale

• Refer to Appendix D: Project Documentation• Refer to Appendix D: Project Documentation

Demos & oral tests

29CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

Project Grading (2)Project Grading (2)Project Grading (2)Project Grading (2)
Demos & oral tests
• Usually done in the next week of the due date
• Each team should meet the instructor offline
• All team members should be present
• You may bring your notebook as there could be a ou ay b g you oteboo as t e e cou d be a

problem in running your solution in the instructor’s
machine

• You should be able to answer any questions on
– Basic system architecture
– Design decisions
– Implementation details
–

30CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

– ...

Project Grading (3)Project Grading (3)Project Grading (3)Project Grading (3)
Individual score
• = f (overall project score, individual contribution)
• You should specify the followings in your report:p y g y p

– The percentage of contribution for each team member
– The detailed list of specific tasks done by each team

bmember

• The report should be signed by all team members as
a token of acceptancea token of acceptance.

• During demos & oral tests, the percentage of
contribution can be adjusted by the instructorcontribution can be adjusted by the instructor.

• As long as your contribution is >= 25%, you will get
the full project score.

31CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

t e u p oject sco e.

P j t 0P j t 0Project 0:
Warming Up

Project 0:
Warming Up Warming Up Warming Up

Project 0 (1)Project 0 (1)Project 0 (1)Project 0 (1)
Set up your own project environmentp y p j
• Install Linux
• Install all the required toolsq
• Install Pintos
• Capture the screen shot of working PintosCaptu e t e sc ee s ot o o g tos
$ pintos run alarm‐multiple

33CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

Project 0 (2)Project 0 (2)Project 0 (2)Project 0 (2)
Add a new test code: print-namep
• Add a new kernel function which prints your name in

ASCII text format
• To run the new function, add a new command

“print‐name”
– The following command should run your new function
$ pintos run print‐name

Work in the i t / /th d and• Work in the pintos/src/threads and
pintos/src/tests/threads directories

• Be creative when you print your name!• Be creative when you print your name!
• Capture the screen shot

34CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

Project 0 (3)Project 0 (3)Project 0 (3)Project 0 (3)
Example:p

35CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

Project 0 (4)Project 0 (4)Project 0 (4)Project 0 (4)
Documentation
• Specification of your environment

– Linux distributions, versions of gcc, etc.

• A screen shot of “alarm‐multiple”
• A screen shot of “print‐name”
• Detailed explanation of how the “print‐name” is

handled and your name is printed by the kernel

Due:
Sep 30 11:59PM (NO slip day)• Sep. 30, 11:59PM (NO slip day)

• Submit via e-mail to jinsookim@skku.edu
N t Thi i i di id l j t

36CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

• Note: This is an individual project

