)
£
)
Z
£
o
-

WINOS

Prime

Megatron

SELH7|=

q

-
O
| -

A4, ofcH

* QA

-~
=
=
9
=
2
_~
195}
®
S
=
S
S
»
=
=
RS
RS
(@
S
R
=
LN
D
S
S
N
sy
=
Fy
2]
S
VD
-
(%)
=
wn
&0
=
-
N
NS
QU
o
S5
S
S
o
S8
wn
QO

Project 1:
Threads

Jin-Soo Kim (jinsookim@skku.edu)
Computer Systems Laboratory
Sungkyunkwan University
http://csl.skku.edu

Sk

UNIVERSITY

U

* The current Pintos kernel
« There is only one address space

« There can be a number of threads running in the
kernel mode

« All the kernel threads share the same address space

]

MS/DOS

Sl Do Traditional UNIX

Mach, OS/2, Linux,
Windows, Mac OS X,
Solaris, HP-UX

The current
Pintos

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

" Address space
« Up to 64MB of physical memory
« The kernel maps the physical memory at PHYS_BASE

(0xCc0000 0000)

User

PHYS_BASE >
(0xc0000000)

Kernel

Virtual
Address
Space

static inline void *ptov (uintptr_t addr) {
return (void *) (paddr + PHYS BASE);
}
static inline uintptr_t vtop (void *addr) {
return (uintptr_t) vaddr -
(uintptr_t) PHYS_BASE;

64 VIB Physical memory

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

= Kernel thread

« The kernel maintains a TCB (Thread Control Block) for
each thread (struct thread)

« Created using thread_create()

tid t thread create (const char *name, int priority,
thread_func *function, void *aux);

— Allocate a page (4KB) for thread stack
— Initialize TCB

— Add TCB to the run queue

— Return the corresponding tid

e The function running_ thread() returns the pointer
to the TCB of the current thread

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

e ——
N

s ——
— e E—

= TCB (Thread Control Block)

status

struct thread *t 2> -

struct thread

struct thread *running thread() {
Get %esp;
return (%esp & Oxfffffooo);

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

* Thread states
« Refer to Appendix A.2: Threads

schedule()

THREAD _
READY

THREAD _
RUNNING

THREAD _
DYING

thread_yield()

thread_create() thread_exit()

thread_unblock() thread_block()

THREAD _
BLOCKED

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

* Ready queue

all list

tid = 3 tid = 4
THREAD_RUNNING THREAD_RUNNING

THREAD_RUNNING

elem elem

THREAD_BLOCKED
-
ready_list

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

* List management in Pintos
e #include <list.h> /* src/lib/kernel/list.h */
« A type oblivious, easy-to-use, circularly-linked list

|—> head.prev > tail.prev struct list
head.next tail.next
head.prev 3 prev —3 prev —> tail.prev
head.next next next tail.next
= / —3

struct list elem

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

" List management in Pintos (cont'd)
e list init (struct list *1list);
— Initializes 1ist as an empty list

e list push front (struct list *list, struct list _elem *elem);
list push back (struct list *1list, struct list_elem *elem);

— Inserts elem at the beginning (end) of 1list
e list remove (struct list elem *elem);
— Removes elem from its list

e list_pop_front (struct list *1list);
list_pop_back (struct list *1list);

— Removes the front (back) element from 1ist and returns it
e list entry (LIST ELEM, STRUCT, MEMBER);

— Converts pointer to list element LIST_ELEM into a pointer to
the structure that LIST_ELEM is embedded inside.

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

= List management example
 Display thread list (tid & name)

struct list all list;
struct thread {
tid t tid;

char name[16];

struct list elem allelem;

s

void list thread ()
{

struct list elem *e;

for (e = list begin(&all list);
e != 1list end(&all list);
e = list next(e))
{
struct thread *t =
list entry (e, struct thread, allelem);
printf (“%d: %s\n”, t->tid, t->name);
}
}

o (cf) http://isis.poly.edu/kulesh/stuff/src/klist/

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

= Requirements
« Alarm clock
 Priority scheduling
 Priority donation
« Note: Advanced scheduler is optional

" Test cases to pass (total 18 tests)

——————————————————————— j

alarm-priority, alarm-zero, alarm-negative, priority-
change, priority-donate-one, priority-donate-multiple,
priority-donate-multiple2, priority-donate-nest,
priority-donate-sema, priority-donate-lower,
priority-fifo, priority-preempt, priority-sema,
priority-condvar, priority-donate-chain

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

* Reimplement timer_sleep()

void timer_sleep (int64 x);

« Suspends execution of the calling thread until time
has advanced at least x timer ticks

« The current version simply “busy waits.”

— The thread spins in a loop checking the current time and
calling thread_yield() until enough time has gone by.

« Reimplement it to avoid busy waiting

* You don't have to worry about the overflow of timer
values.

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

* Time management in Pintos

« On every timer interrupt, the global variable ticks is
Increased by one

— The variable ticks represent the number of timer ticks since
the Pintos booted

— Timer frequency: TIMER_FREQ (= 100) ticks per second
(defined in <src/devices/timer.h>)
e The time slice is set to TIME_SLICE (= 4) ticks for
each thread (defined in <src/threads/thread.c>)

e timer_interrupt(): Timer interrupt handler

— Increase the ticks variable

— If the current thread has exhausted its time slice, call
thread yield().

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

e

" The current timer_sleep() implementation
e In <src/devices/timer.c>
e timer ticks() returns the current value of ticks

int64_t timer_elapsed (int64_t then)
{

}

return timer_ticks () - then;

void timer_sleep (int64_t ticks)
{

int64_t start = timer_ticks ();
ASSERT (intr _get level () == INTR_ON);

while (timer _elapsed (start) < ticks)
thread_yield ();

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

= Hints

Make a new list of threads (“waiting_list")

Remove the calling thread from the ready list and
Insert it into the "waiting_list” changing its status to
THREAD_BLOCKED

The thread waits in the “waiting_list” until the timer
expires

When a timer interrupt occurs, move the thread back
to the ready list if its timer has expired.

Use <list.h> for list manipulation

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

g (1)

. Scheduling
« The scheduling policy decides which thread to run
next, given a set of runnable threads

* The current Pintos scheduling policy:
Round-robin (RR) scheduling
« The ready queue is treated as a circular FIFO queue

« Each thread is given a time slice (or time quantum)
— TIME_SLICE (= 4) ticks by default

o If the time slice expires, the current thread is moved
to the end of the ready queue

« The next thread in the ready queue is scheduled
« No priority: All the threads are treated equally

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

* The current Pintos scheduling

/* Yields the CPU. The current thread is not put to sleep and
may be scheduled again immediately at the scheduler's whim. */
void
thread yield (unid)l
{
struct thread *cur = thread current ();
enum intr level old level;

ASSERT (l!intr context ());

old level = intr disable ();
if (cur != idle thread)
list push back (&ready list, &cur->elem);
cur->status = THREAD READY;
schedule ();
intr_set level (old level);

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

" The current Pintos scheduling (cont'd)

/* Schedules a new process. At entry, interrupts must be off and
the running process's state must have been changed from
running to some other state. This function finds another
thread to run and switches to 1it.

It's not safe to call printf() until schedule tail() has
completed. */
static void
schedule (void)l
{
struct thread *cur = running_thread ();
struct thread *next = next thread to run ();
struct thread *prev = NULL;

ASSERT (intr _get level () == INTR_OFF);
ASSERT (cur->status != THREAD RUNNING);
ASSERT (is thread (next));

if (cur != next)
prev = switch threads (cur, next);
schedule tail (prev);

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

" The current Pintos scheduling (cont'd)

/* Chooses and returns the next thread to be scheduled. Should
return a thread from the run queue, unless the run queue is
empty. (If the running thread can continue running, then it
will be in the run queue.) If the run queue is empty, return
idle thread. */

static struct thread *

next thread to run (uoid)l

{

if (list empty (&ready list))
return idle thread;
else

return list entry (list pop front (&ready list), struct thread, elem);

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

T ——

" Priority scheduling
« Each thread is given a scheduling priority

« The scheduler chooses the thread with the highest
priority in the ready queue to run next

« Thread priorities in Pintos 63 —— PRI_MAX
— 64 priority levels (default = 31)
higher
— Lower numbers correspond to
lower priorities 31 | PRI_DEFAULT

» Min priority = 0
— The initial priority is passed as an
argument to thread_create() 0 PRI_MIN

» Max priority = 63 l
lower

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

= Note

« When a thread is added to the ready list that has a
higher priority than the currently running thread, the
current thread should immediately yield the
processor to the new thread.

« A thread may raise or lower its own priority at any
time, but lowering its priority such that it no longer
has the highest priority must cause it to immediately
yield the CPU.

« When threads are waiting for a lock, semaphore, or
condition variable, the highest priority waiting thread
should be awakened first.

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

= Synchronization problem

« Accessing a shared resource by two concurrent
threads creates a situation called race condition
— The result is non-deterministic and depends on timing

« We need “synchronization” mechanisms for
controlling access to shared resources

« Critical sections are parts of the program that access
shared resources

« We want to provide mutual exclusion in critical
sections
— Only one thread at a time can execute in the critical section
— All other threads are forced to wait on entry
— When a thread leaves a critical section, another can enter

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

" Synchronization mechanisms in Pintos
e Locks

- void lock_init (struct lock *1lock);

- void lock_acquire (struct lock *lock);

- void lock_release (struct lock *lock);

« Semaphores

- void sema_init (struct semaphore *sema, unsigned value);
- void sema_up (struct semaphore *sema);

- void sema down (struct semanhore *sema):
e i LA RN | \J‘l A - Jhllluyllvl N J_IIIM/,

 Condition variables

- void cond _init (struct condition *cond);

- void cond wait (struct condition *cond, struct lock *lock);

- void cond signal (struct condition *cond, struct lock *lock);

- void cond _broadcast (struct condition *cond, struct lock *lock);

« Refer to Appendix A.3: Synchronization

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

" |o

cks

A lock is initially free

Call lock _acquire() before entering a critical
section, and call lock_release() after leaving it

Between lock _acquire() and lock release(),
the thread holds the lock

lock_acquire() does not return until the caller
holds the lock

At most one thread can hold a lock at a time

After lock_release(), one of the waiting threads
should be able to hold the lock

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

= Semaphores

« A semaphore is a nonnegative integer with two
operators that manipulate it atomically

e sema_down() waits for the value to become positive,
then decrement it

e sema_up() increments the value and wakes up one

waiting thread, if any

A semaphore initialized to 1 is similar to a lock

A semaphore initialized to N (> 1) represents a
resource with many units available
— Up to N threads can enter the critical section

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

= Condition variables

Condition variables allow a thread in the critical
section to wait for an event to occur

Condition variables are used with locks

cond_wait() atomically releases lock and waits for
an event to be signaled by another thread.

— Lock must be held before calling cond_wait()

— After condition is signaled, reacquires lock before returning

cond_signal() wakes up one of threads that are
waiting on condition

cond_broadcast() wakes up all threads, if any,
waiting on condition

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

" Priority inversion problem

« A situation where a higher-priority thread is unable
to run because a lower-priority thread is holdlng a
resource it needs, such as a lock.

o What really happened on Mars?

lock_acquire()

Bus management priority inversion
|
task '

communications |
task l

P

meteorological data
gathering task

lock_acquire() lock_release()

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

e

" Priority donation (or priority inheritance)

« The higher-priority thread (donor) can donate its
priority to the lower-priority thread (donee) holding
the resource it requires.

« The donee will get scheduled sooner since its priority
Is boosted due to donation

« When the donee finishes its job and releases the
resource, Its priority is returned to the original
priority

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

= Before priority donation

Thread H (P = 35)
Thread M (P = 33)

Thread L (P = 31)

lock_acquire()

P=35

priority inversion

P=33

lock_acquire()

= After priority donation

Thread H (P = 35)
Thread M (P = 33)

Thread L (P = 31)

lock_acquire(

P=35

priority donated; Thread L’s priority becomes 35

L

.

P=31

lock_release()

P=33

lock_acquire()

lock_release() \Thread s priority is returned to 31

A

P=31

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

* Multiple donations

« Multiple priorities are donated to a single thread

acquire(b) release(b)

create exit
Thread H (P=33) | | I
I I I
acquire(a) : : : : release(a)
| I I 1 \1,
1 I | l .
: create | I I 1 exit :
Thread M (P=32) |) - , i = |
| | I | I
I | | I I 1 I I
I | | I I 1 I I
I 1 I | | 1 I ¥
Thread L (P = 31) P=31
acquire(a) acquire(b) release(b) release(a)

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

* Multiple donations example

void
test priority donate multiple (void)
{

struct lock a, b;

/* This test does not work with the MLFQS. */
ASSERT (!thread mlfgs);

/* Make sure our priority is the default. */
ASSERT (thread get priority () == PRI_DEFAULT);

lock_init (&a);
lock_init (&b);

lock_acquire (&a);
lock _acquire (&b);

thread create ("z", PRI_DEFAULT + 1, a_thread func, &a);
msg ("Main thread should have priority %d. Actual priority: %d.",
PRI DEFAULT + 1, thread get priority ());

thread _create ("b", PRI_DEFAULT + 2, b_thread func, &b);
msg ("Main thread should have priority %d. Actual priority: %d.",
PRI_DEFAULT + 2, thread get priority ());

lock_release (&b);

msg ("Thread b should have just finished.");

msg ("Main thread should have priority %d. Actual priority: %d.",
PRI_DEFAULT + 1, thread_get priority ());

lock _release (&a);

msg ("Thread a should have just finished.™);

msg ("Main thread should have priority %d. Actual priority: %d.",
PRI_DEFAULT, thread_get_priority ());

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

static void
a_thread func (void *lock)

{
struct lock *lock = lock ;

lock_acquire (lock);

msg ("Thread a acquired lock a.");
lock_release (lock);

msg ("Thread a finished.™);

¥

static void
b _thread func (veid *lock)

{
struct lock *lock = lock_;

lock_acquire (lock);

msg ("Thread b acquired lock b."});
lock release (lock);

msg ("Thread b finished.™);

src/tests/threads/priority-donate-multiple.c

= Nested donation

o If H is waiting on a lock that M holds and M is
waiting on a lock that L holds, then both M and L
should be boosted to H's priority

acquire(b) release(b)

create exit
Thread H (P=33) |) I
| |
acquire(b) acquire(a) : release(a) : :
I
create : ‘L | 32| exit
1 P=
Thread M (P=32) | I | 1 = I
I I I release(b) :
| | 1 |
| | 1 *
. i_q
acquire(a) release(a)

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

* Nested donation example

void
test priority donate nest (void)

struct lock a, b;
struct locks locks;

/* This test does not work with the MLFQS. */
ASSERT (!thread mlfgs);

/* Make sure our prilority is the default. */
ASSERT (thread get priority () == PRI_DEFAULT);

lock_init (Ra);
lock_init (&b);

lock_acquire (&a);

locks.a = &a;

locks.b = &b;

thread create ("medium”, PRI_DEFAULT + 1, medium thread func, &locks);

thread_yield ();

msg ("Low thread should have priority %d. Actual priority: %d.",
PRI_DEFAULT + 1, thread_get_priority ());

thread create ("high", PRI_DEFAULT + 2, high thread func, &b);

thread yield ();

msg ("Low thread should have priority %d. Actual priority: %d.",
PRI_DEFAULT + 2, thread_get_priority ());

lock_release (&a);

thread yield ();

msg ("Medium thread should just have finished.");

msg ("Low thread should have priority %d. Actual priority: %d.",
PRI_DEFAULT, thread get priority ());

static void
medium_thread func (void *locks)

{

struct locks *locks = locks ;

lock_acquire (locks->b);
lock_acquire (locks->a);

msg ("Medium thread should have priority %d.
PRI_DEFAULT + 2, thread get priority ());
msg ("Medium thread got the lock.");

lock release (locks-»a);
thread yield ();

lock release (locks->b);
thread yield ();

msg ("High thread should have just finished.™);
msg ("Middle thread finished.");

¥

static void
high thread func (void *lock)

{
struct lock *lock = lock_;

lock acquire (lock);

msg ("High thread got the lock.");
lock_release (lock);

msg ("High thread finished.");

src/tests/threads/priority-donate-nest.c

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

Actual priority:

wd.",

" Hints
« Remember each thread’s base priority

« When you schedule a new thread, find the thread
with the highest priority among candidates

« The “effective” priority of a thread can be greater
than the base priority due to priority donation

« The “effective” priority should be adjusted properly
on lock _acquire() and lock_release()

* You don't have to implement priority donation for
semaphores or condition variables

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

" Due

e October 13, 11:59PM

e Fill out the design document (threads.tmpl) and

put it in your source tree under the name
pintos/src/threads/DESIGNDOC

« Tar and gzip your Pintos source codes
$ cd pintos
$ (cd src/threads; make clean)
$ tar cvzf TeamName.tar.gz ./src

e Send it to the instructor via e-mail

« The submission status will be posted in the course
homepage.

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

= Submitting your report

e Hand in the printed version of your design document
(DESIGNDOC file) in the following class on October 14.

 In addition, your report should contain the following
information:

— The percentage of contribution for each member
— The list of specific tasks done by each member

« Your report should be signed by all team members

e Good luck!

CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

