
P j t 3P j t 3Project 3:
Virtual Memory

Project 3:
Virtual MemoryVirtual MemoryVirtual Memory

Jin-Soo Kim (jinsookim@skku.edu)Jin Soo Kim (jinsookim@skku.edu)
Computer Systems Laboratory

Sungkyunkwan University
htt // l kk dhttp://csl.skku.edu

Introduction (1)Introduction (1)Introduction (1)Introduction (1)
Paging in the x86 architectureg g

2CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

Introduction (2)Introduction (2)Introduction (2)Introduction (2)
Current Pintos VM implementationp
• Use paging
• Page size: 4KBg
• Each process has its own page tables

– The page directory is allocated when the process is created
(pagedir_create() @ userprog/pagedir.c)

– (struct thread *) t‐>pagedir points to the page
directory (load() @ userprog/process c)directory (load() @ userprog/process.c)

– The (secondary) page tables are dynamically created if
necessary (lookup_page() @ userprog/pagedir.c)

– For kernel region, processes have the same mapping
(PHYS_BASE ~ 0xffffffff)

3CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

Introduction (3)Introduction (3)Introduction (3)Introduction (3)
Current Pintos VM implementation (cont’d)p ()
• No demand paging

– When a process is created, all the contents of code and data
segments are read into the physical memory
(load_segment() @ userprog/process.c)

• Fixed stack size• Fixed stack size
– Only one stack page is allocated to each process

(setup_stack() @ userprog/process.c)

• No page faults in the user mode
– Everything needed by each process is in the physical memory

• Page faults may occur only in the kernel mode
– If you use the optimistic approach to accessing arguments

Wh i lid i d i ll

4CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

– When invalid pointers are passed via system calls

Project 3 OverviewProject 3 OverviewProject 3 OverviewProject 3 Overview
Requirementsq
• Lazy loading (or demand paging)
• Swapping in/out pages from/to swap diskpp g / p g / p
• Dynamic stack growth
• Memory mapped filese o y apped es

5CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

Lazy Loading (1)Lazy Loading (1)Lazy Loading (1)Lazy Loading (1)
Why?y
• An executable file holds code and data images
• A process will not need all the pages immediatelyp p g y

How to?
• Use the executable file as the backing store• Use the executable file as the backing store

– Only when a page is needed at run time, load the
corresponding code/data page into the physical memory

– Loaded pages will have valid PTEs

• Handling page faults
– Accesses to not-yet-loaded pages will cause page faults
– Find the corresponding location in the executable file

Read in the page from the executable file

6CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

– Read in the page from the executable file
– Setup the corresponding PTE

Lazy Loading (2)Lazy Loading (2)Lazy Loading (2)Lazy Loading (2)
Loading code/data from the executable fileg
• In load_segment() @ userprog/process.c
• Each page is filled with data using “page zero bytes” p g g p g _ _ y

and “page_read_bytes”
– page_zero_bytes + page_read_bytes = PGSIZE

• All zeroed page (page_zero_bytes == PGSIZE)
– Allocate a new page and initialize it with zeroes

ll d d• Full code/data page (page_read_bytes == PGSIZE)
– Allocate a new page and read its contents from the

executable fileexecutable file

• Partial page (0 < page_read_bytes < PGSIZE)
– Read page read bytes from the executable file and fill the

7CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

Read page_read_bytes from the executable file and fill the
rest of the page with zeroes

Lazy Loading (3)Lazy Loading (3)Lazy Loading (3)Lazy Loading (3)
The supplemental page tablepp p g
• The page table with additional data about each page
• Main purposesp p

– On a page fault, find out what data should be there for the
faulted virtual page
O t i ti d id h t t f– On a process termination, decide what resources to free

• Possible organizations
Per segment– Per-segment

– Per-page

• ImplementationImplementation
– You can use any data structure for the supplemental page

table.

8CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

– <hash.h> will be useful (lib/kernel/hash.[ch])

Lazy Loading (4)Lazy Loading (4)Lazy Loading (4)Lazy Loading (4)
Strategygy

Page fault
handler

1 Get the information

VA

The
supplemental

1. Get the information
on the faulted page

x86
page
table

Page fault page table2. Allocate a new frame

4 Update informationtable

3. Read from the executable file

4. Update information

5. Install the new page

9CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

Swapping (1)Swapping (1)Swapping (1)Swapping (1)
Why?y
• You may run out of the physical memory
• Your program’s memory footprint can be larger than p g y p g

the physical memory size

How to?
• Find a victim page in the physical memory
• Swap out the victim page to the swap diskSwap out the victim page to the swap disk
• Extend your supplemental page table to indicate the

victim page has been swapped outp g pp
• When the page is accessed later, swap in the page

from the swap disk to the physical memory

10CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

Swapping (2)Swapping (2)Swapping (2)Swapping (2)
Swap diskp
• Use the following command to create an 4 MB swap

disk in the vm/build directory
$ pintos‐mkdisk swap.dsk 4

• Alternatively, you can tell Pintos to use a temporary
4 MB di k f i l i h di k4-MB swap disk for a single run with ‐‐swap‐disk=4
– Used during “make check”

A di k i t f l t• A swap disk consists of swap slots
– A swap slot is a continuous, page-size region of disk space

on the swap diskp

swap
slot
0

swap
slot
1

swap
slot
2

...

11CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

0 1 2

Swapping (3)Swapping (3)Swapping (3)Swapping (3)
Accessing swap diskg p
• The swap disk is automatically attached as hd1:1

when you run Pintos.
• Use the disk interface in devices/disk.h

– A size of a disk sector is 512 bytes
– You can read or write one sector at a time

struct disk *disk get (int chan no int dev no);struct disk *disk_get (int chan_no, int dev_no);
disk_sector_t disk_size (struct disk *);
void disk_read (struct disk *, disk_sector_t, void *);
void disk write (struct disk *, disk sector t, void disk_write (struct disk , disk_sector_t,

const void *);

12CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

Swapping (4)Swapping (4)Swapping (4)Swapping (4)
Managing swap slotsg g p
• Pick an unused swap slot for evicting a page from its

from to the swap disk
• Free a swap slot when its page is read back or the

process is terminated
• Allocate lazily, i.e., only when they are actually

required by eviction

The swap table
• The swap table tracks in-use and free swap slots
• <bitmap.h> will be useful (lib/kernel/bitmap.[ch])

13CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

Swapping (5)Swapping (5)Swapping (5)Swapping (5)
Page replacement policyg p p y
• You should implement a global page replacement

algorithm that approximates LRU
– Do not use FIFO or RANDOM
– The “second chance” or “clock” algorithm is OK

B if i l t l t li– Bonus if you implement your own page replacement policy
better than the “second chance” algorithm

• Get/Clear Accessed and Dirty bits in the PTEGet/Clear Accessed and Dirty bits in the PTE
– pagedir_is_dirty(), pagedir_set_dirty()
– pagedir_is_accessed(), pagedir_set_accessed()

• Other processes should be able to run while you are
performing I/O due to page faults

14CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

– Some synchronization effort will be required

Swapping (6)Swapping (6)Swapping (6)Swapping (6)
The frame table
• Allows efficient implementation of eviction policy
• One entry for each frame that contains a user pagey p g

– Each entry contains a pointer to the page, if any, that
currently occupies it, and other data of your choice

h f bl h l h• Use the frame table while you choose a victim page
to evict when no frames are free

• Code pages can be shared among those processes
created from the same executable file (optional)created from the same executable file (optional)

15CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

Swapping (7)Swapping (7)Swapping (7)Swapping (7)
User pool vs. kernel poolp p
• The physical memory is divided into the user pool

and the kernel pool
– Running out of pages in the user pool just causes user

programs to page
Running out of pages in the kernel pool means a disaster– Running out of pages in the kernel pool means a disaster

– The size of the user pool can be limited (–ul option)

• The frames used for user pages should be obtainedThe frames used for user pages should be obtained
from the “user pool”
– By calling palloc_get_page (PAL_USER)

16CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

Swapping (8)Swapping (8)Swapping (8)Swapping (8)
Frame allocation
• On top of the current page allocator (threads/palloc.c)

– palloc_get_page(), palloc_free_page()

• If there are free frames in the user pool, allocate one
by calling palloc_get_page()

• If none is free
– Choose a victim page using your page replacement policy

R f h f f bl h– Remove references to the frame from any page table that
refers to it

– If the frame is modified, write the page to the file system or , p g y
to the swap disk

– Return the frame

17CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

Stack Growth (1)Stack Growth (1)Stack Growth (1)Stack Growth (1)
Growing the stack segmentg g
• Allocate additional pages as necessary
• Devise a heuristic that attempts to distinguish stack p g

accesses from other accesses
– Bug if a program writes to the stack below the stack pointer
– However, in x86, it is possible to fault 4 ~ 32 bytes below

the stack pointer

• You may impose some absolute limit on stack size• You may impose some absolute limit on stack size
• The first stack page need not be allocated lazily

– The page is initialized with the command line argumentsThe page is initialized with the command line arguments

• All stack pages should be candidates for eviction
– An evicted stack page should be written to swap

18CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

An evicted stack page should be written to swap

Stack Growth (2)Stack Growth (2)Stack Growth (2)Stack Growth (2)
How to obtain the user stack pointer?p
• You need the current value of the user program’s

stack pointer on page fault
– Compare it with the faulted address

• When the page fault occurred in the user mode
– Use (struct intr_frame *) f‐>esp

• When the page fault occurred in the kernel mode
i f i t d b th– struct intr_frame is not saved by the processor

– (struct intr_frame *) f‐>esp yields an undefined value
– Save esp into struct thread on the initial transition fromSave esp into struct thread on the initial transition from

user to kernel mode

19CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

Memory Mapped Files (1)Memory Mapped Files (1)Memory Mapped Files (1)Memory Mapped Files (1)
Examplep
• Writes the contents of a file to the console

#include <stdio h>#include <stdio.h>
#include <syscall.h>
int main (int argc, char *argv[])
{{

void *data = (void *) 0x10000000;

int fd = open (argv[1]);int fd = open (argv[1]);
mapid_t map = mmap (fd, data);
write (1, data, filesize(fd));
munmap (map);munmap (map);
return 0;

}

20CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

Memory Mapped Files (2)Memory Mapped Files (2)Memory Mapped Files (2)Memory Mapped Files (2)
System calls to implementy p

mapid_t mmap (int fd, void *addr);
void munmap (mapid t mapping);

• mmap() fails if
fd i 0 1

void munmap (mapid_t mapping);

– fd is 0 or 1
– The file has a length of zero bytes
– addr is 0addr is 0
– addr is not page-aligned
– The range of pages mapped overlaps any exisitng set of

mapped pages

• All mappings are implicitly unmapped when a
process exits

21CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

process exits

Memory Mapped Files (3)Memory Mapped Files (3)Memory Mapped Files (3)Memory Mapped Files (3)
Managing mapped filesg g pp
• Lazily load pages in mmap regions

– For the final mapped page, set the bytes beyond the end of
the file to zero

• Use the mmap’d file itself as backing store for
mappingmapping
– All pages written to by the process are written back to the

file

• Closing or removing a file does not unmap any of its
mappings
– Once created, a mapping is valid until munmap() is called or

the process exits

22CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

Summary (1)Summary (1)Summary (1)Summary (1)
Pagesg
• Code page (clean)
• Data page (clean/dirty)p g (/ y)
• Stack page (dirty)
• mmaped page (clean/dirty)aped page (c ea /d ty)

23CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

Summary (2)Summary (2)Summary (2)Summary (2)
When you attach a new frame,y
• It may be just initialized to zero
• It may be read from a filey
• It may be read from a swap slot

When you evict a frame,
It b j t d d• It may be just dropped

• It may be swapped out to a swap slot
It b itt t fil• It may be written to a file

24CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

Tips (1)Tips (1)Tips (1)Tips (1)
Suggested order of implementationgg p
• Lazy loading

– Modify load_segment() and page_fault()
– Construct the supplemental page table
– You should be able to run all user programs of Project 2

• Frame allocation/deallocation layer
Add a new interface that can allocate or free a frame– Add a new interface that can allocate or free a frame

– Construct the frame table as you allocate a new frame
– Assume there is enough physical memoryg p y y

No eviction is necessary
– You should be able to run all user programs of Project 2

25CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

Tips (2)Tips (2)Tips (2)Tips (2)
Suggested order of implementation (cont’d)gg p ()
• Page replacement policy

– Develop your own page replacement policy
– Need to interact with the supplemental page table and the

frame table
First try to evict read only pages and make sure it has no– First, try to evict read-only pages and make sure it has no
problem

– And then, implement the swap table and test your code to
access the swap disk

– Finally, implement the full-fledged page replacement policy

Stack growth• Stack growth
– Extend your page fault handler

• Memory mapped files

26CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

• Memory mapped files

Tips (3)Tips (3)Tips (3)Tips (3)
No files in the vm directoryy
• You should add your files in the directory
• The Pintos documentation says…y

• Adding your own source files (src/Makefile.build)

27CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

SubmissionSubmissionSubmissionSubmission
Due
• December 15, 11:59PM
• Fill out the design document (vm.txt) and put it in g () p

your source tree (pintos/src/vm)
• Tar and gzip your Pintos source codes

$ cd pintos
$ (cd src/vm; make clean)
$ f /$ tar cvzf TeamName.tar.gz ./src

• Send it to the instructor via e-mail
(NOT to the GoogleGroups!!)(NOT to the GoogleGroups!!)

• Hand in the printed version of your design document
during the demo session (after final exam)

28CSE3008: Operating Systems | Fall 2009 | Jin-Soo Kim (jinsookim@skku.edu)

during the demo session (after final exam)

