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The high-performance servers

e Researchers are giving attention to improve web servers performance
e Previous servers used one-process per connection
e New servers use single-process to reduce context-switching costs
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* DoS = Denial-of-Service



Quality-of-Service from service providers

e How to give differentiated QoS to clients

e How control resource usage
o Application has no control over the consumption of resources inside kernel

e How application can control which connections are high priority

* QoS = Quality-of-Service



Typical models for high-performance servers

Event-driven server Process-per connection Single-process multi-threaded
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Domain-classification of processes

e Network-intensive application
e Multi-process application
e Single-process multi-threaded application



Network-intensive application

Multiple threads doing single activity

Lot of process done in kernel

Kernel generally does not control

accounting for such resource
consumption
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Multi-process application

e Multiple user space processes
cooperating to perform a single activity

e Managing is done in all process rather
than of individual processes

Resource management is a set of

all the processes.
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Single-process multi-threaded application
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o  One for each connection (Protection Domain Independent
+ Resource Principal) Activities

Application
Threads

User level
Kernel

Resource management is a set of

all the resources used for the
independent activity.

Application domain
extends into the
kernel, but is
uncontrolled.

N

HTTP Connections




The
Motivation
Of the
Research



Problems

General-purpose OS provides inadequate support for resource management
Resource management is tied to processes running to a given machine
Applications have little control over resources the kernel uses for them

Resources used by the kernel are often accounted / utilized inaccurately
o (according to the process ) resulting in bad scheduling decisions

Processes (protection domains) are the

unit of resource management - the
“resource principal”
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Resource Containers

e Abstraction entity that logically contains all system resources
o CPU time, sockets, network buffers, etc.

e Containers can also be attached with attributes
o Limit resources such as: CPU availability, Network QoS, scheduling priorities, etc.
e Resource container aspects

o Hierarchy (parent -> children)
o Dynamic resource binding
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How does it works?

e Applications have to identify resource principals
o Associate those independent activities with resource containers

Applications Applications Applications

Host OS kernel with virtualization layer

Hardware 14




Containers in a multi-threaded server

e New RC created for each connection

i Application Process
e Connection uses lot of system resources (Fﬁ’r% tection Domainy Resource Containers
o Usage charged to the corresponding container
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Containers in an event-driven server

e Web Server associates a new container

for each connection
o  Single-thread serviced

e Thread's binding changes dynamically as
it moves across connections

e The associated container will be charged
for the processing the thread performs

To avoid rescheduling threads after every
resource container binding, a list of

containers is associated with a thread and
it is used to schedule the thread
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Resource Containers summary

e RC allow an application to associate scheduling info with an activity
o Allows system'’s scheduler to provide resources directly to an activity

e Container mechanism supports a large variety of scheduling models
o  Numeric priorities, guaranteed CPU shares, or CPU usage limits

e Scheduler binding between each thread being multiplexed

o Account the threads that have been shared in multiple containers
o Athread scheduler binding is set implicitly

LRP: for such a network processing, the

kernel does minimal processing and gives
the remainder to the application
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Evaluation



Prototype implementation

e Modifications in Digital UNIX 4.0D kernel
e Changes in CPU scheduler, resource management and network subsystem
e Per-process kernel thread used for processing network packets in priority

order of their containers
o  For accounting, this thread sets its resource binding appropriately
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Prioritized handling of clients

e As the number of CGl increases, CPU is

shared among a larger set of processes Unmodified Sys:em .l '
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Immunity against SYN-flood

e Malicious clients sent bogus SYN
packets to server at high rate

e Measured server's throughput
o Slight degradation due to the interrupt
overhead from SYN flood
o Kept above 73% throughput
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Conclusion



Conclusion

e Resource container can explicitly identify a resource principal

e Explicit and fine-grained control over resource consumption
o Inall levels of the system (user & kernel space)

e Separation of resource management from protection domain
e (Can be used to address a large variety of resource management scenarios
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Thank you!

Any Questions?

Computer Systems Laboratory
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