
Resource containers:
A new facility for resource
management in server systems
Authors:
Gaurav Banga
Peter Druschel
Jeffrey C. Mongul

Presented by: Cassiano Campes

OSDI 1999

The high-performance servers

● Researchers are giving attention to improve web servers performance
● Previous servers used one-process per connection
● New servers use single-process to reduce context-switching costs

Malicious client manages to consume
all of the resources

Multiple
Connections

requests
DoS

2
* DoS = Denial-of-Service

Quality-of-Service from service providers

● How to give differentiated QoS to clients
● How control resource usage

○ Application has no control over the consumption of resources inside kernel

● How application can control which connections are high priority

No “connection” between Application and
kernel (resource management)

3
* QoS = Quality-of-Service

Typical models for high-performance servers

Event-driven server Process-per connection Single-process multi-threaded

Master process attach
connection

Thread scheduler is
responsible for time

sharing
Uses select() or poll() 4

Process
Resource
Management

5

Domain-classification of processes

● Network-intensive application
● Multi-process application
● Single-process multi-threaded application

6

Network-intensive application

● Multiple threads doing single activity
● Lot of process done in kernel

Kernel generally does not control
accounting for such resource

consumption

7

Multi-process application

● Multiple user space processes
cooperating to perform a single activity

● Managing is done in all process rather
than of individual processes

Resource management is a set of
all the processes.

8

Single-process multi-threaded application

● Single process using multiple threads
○ One for each connection

Resource management is a set of
all the resources used for the

independent activity.

9

The
Motivation
Of the
Research

10

● General-purpose OS provides inadequate support for resource management
● Resource management is tied to processes running to a given machine
● Applications have little control over resources the kernel uses for them
● Resources used by the kernel are often accounted / utilized inaccurately

○ (according to the process) resulting in bad scheduling decisions

Problems

11

Processes (protection domains) are the
unit of resource management - the

“resource principal”

Resource
Container

12

Resource Containers

● Abstraction entity that logically contains all system resources
○ CPU time, sockets, network buffers, etc.

● Containers can also be attached with attributes
○ Limit resources such as: CPU availability, Network QoS, scheduling priorities, etc.

● Resource container aspects
○ Hierarchy (parent -> children)
○ Dynamic resource binding

13

How does it works?

● Applications have to identify resource principals
○ Associate those independent activities with resource containers

14Hardware

Host OS kernel with virtualization layer

Container 1 Container 2 Container 3

Applications Applications Applications

Thread

Containers in a multi-threaded server

● New RC created for each connection
● Connection uses lot of system resources

○ Usage charged to the corresponding container

15
* RC = Resource container

Containers in an event-driven server

● Web Server associates a new container
for each connection

○ Single-thread serviced

● Thread’s binding changes dynamically as
it moves across connections

● The associated container will be charged
for the processing the thread performs

16

To avoid rescheduling threads after every
resource container binding, a list of

containers is associated with a thread and
it is used to schedule the thread

Resource Containers summary

● RC allow an application to associate scheduling info with an activity
○ Allows system’s scheduler to provide resources directly to an activity

● Container mechanism supports a large variety of scheduling models
○ Numeric priorities, guaranteed CPU shares, or CPU usage limits

● Scheduler binding between each thread being multiplexed
○ Account the threads that have been shared in multiple containers
○ A thread scheduler binding is set implicitly

17

LRP: for such a network processing, the
kernel does minimal processing and gives

the remainder to the application

* LRP = Lazy Receiver Processing

Evaluation

18

Prototype implementation

● Modifications in Digital UNIX 4.0D kernel
● Changes in CPU scheduler, resource management and network subsystem
● Per-process kernel thread used for processing network packets in priority

order of their containers
○ For accounting, this thread sets its resource binding appropriately

19

Prioritized handling of clients

● As the number of CGI increases, CPU is
shared among a larger set of processes

20
* Common Gateway Interface

Immunity against SYN-flood

● Malicious clients sent bogus SYN
packets to server at high rate

● Measured server’s throughput
○ Slight degradation due to the interrupt

overhead from SYN flood
○ Kept above 73% throughput

21

Conclusion

22

Conclusion

● Resource container can explicitly identify a resource principal
● Explicit and fine-grained control over resource consumption

○ In all levels of the system (user & kernel space)

● Separation of resource management from protection domain
● Can be used to address a large variety of resource management scenarios

23

Thank you!
Any Questions?

cassiano.campes@csl.skku.edu

Computer Systems Laboratory

24

