Resource containers:
A new facility for resource

management in server systems

Authors:
Gaurav Banga
Peter Druschel

Jeffrey C. Mongul OSDI 1999 .

Presented by: Cassiano Campes

The high-performance servers

e Researchers are giving attention to improve web servers performance
e Previous servers used one-process per connection
e New servers use single-process to reduce context-switching costs

Multiple

Connections
requests

* DoS = Denial-of-Service

Quality-of-Service from service providers

e How to give differentiated QoS to clients

e How control resource usage
o Application has no control over the consumption of resources inside kernel

e How application can control which connections are high priority

* QoS = Quality-of-Service

Typical models for high-performance servers

Event-driven server Process-per connection Single-process multi-threaded

HTTP HTTP Master HTTP Slave Processes | |HTTP Server HTTP Threads

HTTP Server
Process Thread Process \ Process
I [\

select) ,”~
[User level AT | User level
Kernel | |Listen

Kernel 1|
\ Socket

TCP/IP TCP/IP TCP/IP

HITP Pending HTTP HTTP Pending HTTP HTTP

Pending HTTP _ .
bk Connections | | Connections Connections | | connections Connections

Connections

Thread scheduler is
Master process attach ' :
responsible for time

Uses select() or poll() connection
sharing

Process
Resource
Management

Domain-classification of processes

e Network-intensive application
e Multi-process application
e Single-process multi-threaded application

Network-intensive application

Multiple threads doing single activity

Lot of process done in kernel

Kernel generally does not control

accounting for such resource
consumption

Application Threads
Single Independent
Activity

Application Process

(Protection Domain
+ Resource Principal)

User level

Kernel

e

Application domain
"really" extends into
the kernel, but this
activity is uncontrolled.

Multi-process application

e Multiple user space processes
cooperating to perform a single activity

e Managing is done in all process rather
than of individual processes

Resource management is a set of

all the processes.

Application Threads Single
Independent
Activity
| } User level
Kernel

Application Process
(Protection Domain
+ Resource Principal)
Application Process
(Protection Domain
+ Resource Principal)

Single-process multi-threaded application

L : :
Single process using multiple threads T e—

o One for each connection (Protection Domain Independent
+ Resource Principal) Activities

Application
Threads

User level
Kernel

Resource management is a set of

all the resources used for the
independent activity.

Application domain
extends into the
kernel, but is
uncontrolled.

N

HTTP Connections

The
Motivation
Of the
Research

Problems

General-purpose OS provides inadequate support for resource management
Resource management is tied to processes running to a given machine
Applications have little control over resources the kernel uses for them

Resources used by the kernel are often accounted / utilized inaccurately
o (according to the process) resulting in bad scheduling decisions

Processes (protection domains) are the

unit of resource management - the
“resource principal”

11

Resource
Container

Resource Containers

e Abstraction entity that logically contains all system resources
o CPU time, sockets, network buffers, etc.

e Containers can also be attached with attributes
o Limit resources such as: CPU availability, Network QoS, scheduling priorities, etc.
e Resource container aspects

o Hierarchy (parent -> children)
o Dynamic resource binding

13

How does it works?

e Applications have to identify resource principals
o Associate those independent activities with resource containers

Applications Applications Applications

Host OS kernel with virtualization layer

Hardware 14

Containers in a multi-threaded server

e New RC created for each connection

i Application Process
e Connection uses lot of system resources (Fﬁ’r% tection Domainy Resource Containers
o Usage charged to the corresponding container

Application
Threads

User level

Kernel

e

Indpendent
Activities

HTTP Connections

il5)
* RC = Resource container

Containers in an event-driven server

e Web Server associates a new container

for each connection
o Single-thread serviced

e Thread's binding changes dynamically as
it moves across connections

e The associated container will be charged
for the processing the thread performs

To avoid rescheduling threads after every
resource container binding, a list of

containers is associated with a thread and
it is used to schedule the thread

Application Process)
(Protection Domain) Resource Containers

Application
Thread

User level

Kernel

S

Indpendent
Activities

HTTP Connections

16

Resource Containers summary

e RC allow an application to associate scheduling info with an activity
o Allows system'’s scheduler to provide resources directly to an activity

e Container mechanism supports a large variety of scheduling models
o Numeric priorities, guaranteed CPU shares, or CPU usage limits

e Scheduler binding between each thread being multiplexed

o Account the threads that have been shared in multiple containers
o Athread scheduler binding is set implicitly

LRP: for such a network processing, the

kernel does minimal processing and gives
the remainder to the application

17
* LRP = Lazy Receiver Processing

Evaluation

Prototype implementation

e Modifications in Digital UNIX 4.0D kernel
e Changes in CPU scheduler, resource management and network subsystem
e Per-process kernel thread used for processing network packets in priority

order of their containers
o For accounting, this thread sets its resource binding appropriately

19

Prioritized handling of clients

e As the number of CGl increases, CPU is

shared among a larger set of processes Unmodified Sys:em .l '

L LRP System --%-- o
RC System 1 - -3 --
RC System 2 ---[3----

—_—
o
o

o
o

=
o

CPU share of CGI processing
Do (op]
S S

o

Number of concurrent CGI requests

20
* Common Gateway Interface

Immunity against SYN-flood

e Malicious clients sent bogus SYN
packets to server at high rate

e Measured server's throughput
o Slight degradation due to the interrupt
overhead from SYN flood
o Kept above 73% throughput

HTTP Throughput (requests/sec)

LA _
\
X
— | With Resource Containers —+— —
! Unmodified System —-%—-
i >‘$ _
\
PR PSS PR PR PR P
0 10 20 30 40 50 60 70

SYN-Flood Rate (1000s of SYNs/sec)

21

Conclusion

Conclusion

e Resource container can explicitly identify a resource principal

e Explicit and fine-grained control over resource consumption
o Inall levels of the system (user & kernel space)

e Separation of resource management from protection domain
e (Can be used to address a large variety of resource management scenarios

23

Thank you!

Any Questions?

Computer Systems Laboratory

24

