Introduction to Basis and Practice in Programming

Fall 2015

Jinkyu Jeong
(jinkyu@skku.edu)
Course Overview
Course Basics

- Class hour
 - GEDB029-45: Mon. 13:00 ~ 14:50
 - GEDB029-46: Tue. 13:00 ~ 14:50
 - 1~2 hours lectures at 400112
 - 2~3 hours lab at 400212

- Instructor: Jinkyu Jeong
 - jinkyu@skku.edu
 - http://csl.skku.edu/People/Jinkyu
 - Office: #400626 in Semiconductor Bldg.
 - Office hour: Thu. & Fri. 13:00 ~ 14:00

- TA
 - 한용섭, ysha812@gmail.com, #400621 in Semiconductor Bldg.
 - 정기식, kisik@csl.skku.edu, #85533 in Corporate Collaboration Center
Prerequisites

- **Prerequisite Courses**
 - Engineering Computer Programming
 - ...

- **Programming Skill**
 - Nothing
 - You will learn how to program in C
Course Materials

- Textbook
 - A Book on C: Programming in C (4th Ed.),
 - Al Kelley, Ira Pohl
 - Addison-Wesley, 1998

- References
 - C by Dissection: The Essentials of C Programming (4th Ed.)
 - Al Kelly, Ira Pohl, Addison Wesley, 2000
 - The C Programming Language
 - Introduction to Computer Science Using Python: A Computational Problem-Solving Focus
 - Charles Dierbach, Wiley 2012

- Course webpage
 - http://csl.skku.edu/GEDB029F15/Overview
Grading

- **Exams** 30%
 - Final

- **Laboratory** 30%
 - Attendance
 - Completion of programming exercises

- **Programming Assignments** 30%
 - Programming assignments (up to 4)

- **Participation & quiz** 10%
 - Homework & quiz
 - Attendance
Academic Honesty

- All work submitted for credit must be your original ones.
- Cheating on lab or homework
 - “F” grade and a report to the Dean
- Cheating on examination
 - report to the president of SKKU
- No exception on dishonesty
Computers
Computers?

- A general-purpose device that can be **programmed** to carry out a finite set of **arithmetic** or **logical** operations.
- Since a sequence of operations can be readily changed, the computer can solve more than one kind of problem.
Conceptual Model of Computers

- Turing Machine

Diagram: Turing Machine components including tape, read-write head, and table of rules.
The 1st generation: Vacuum tube

- **MARK-1, 1941**
- **ENIAC, 1946**
- **Von Neumann: "Stored Program"**
- **EDSAC, 1949**
- **EDVAC, 1951**
- **UNIVAC 1, 1951**
History

• The 2nd generation: Transistor
 • Transistor invented in 1954
 • Operating system, FORTRAN, COBOL, ALGOL

• The 3rd generation: Integrated Circuit
 • IC developed by Jack St. Clair Kilby, Texas Instruments in 1959
 • Nobel Prize laureate for Physics in 2000
History

- **The 4th generation: LSI, VLSI**
 - Large Scale Integrated circuit
 - Minicomputers and micro computers appeared
 - Network, Data Base system
 - Computers became popular by PC
von Neumann machine (Stored-program computer)

Display, disks, keyboard, mouse, scanner, printer, network, …
Components of Computers

- CPU (Central Processing Unit): the hardware within a computer system which carries out the instructions of a computer program by performing the basic arithmetical, logical, and input/output operations of the system.
Components of Computers

- Memory: physical devices used to store programs (sequences of instructions) or data (e.g., program state information) on a temporary or permanent basis for use in a computer or other digital electronic device.

- Examples: RAM, ROM, Disks (HDD, SSD), ...
All you have to know about computers for C programming

- Computers play with numbers only
 - Everything is represented by numbers
 - pictures, numbers, music
 - Binary: bit, byte, word, half word
Computers

- What a computer can do?
 - Everything when you can explain exactly how to do
 - E.g., “check if a number is a prime”

- What a computer cannot do?
 - Everything that you cannot explain exactly how to do
 - E.g., Feeling, thinking, ...

- What a computer can do better than you
 - Compute things extremely faster than you can do
 - 2.6 billion computations in one second
You need a language to tell computers to do what you want

- Korean, English, ... natural languages are used by human

 Find the 100\(^{th}\) prime number

 - Very difficult for computers to understand

- Binary numbers are used by computers

 00001111 10111111 01000101 11111000

 00001111 10111111 01001101 11111000

 - Very difficult for human to understand
A language that describes what to do for a computer

- **Machine language**
 - binary
 - only an expert use it

- **Assembly language**
 - alphabet
 - most embedded system

- **High-level language**
 - C, Java, C++, ...
 - Python, Matlab, ...
 - most software

- **Example Machine Language Code**
  ```
  MOV AX, MIDSCORE
  MOV CX, FINALSCORE
  ADD AX CX
  MOV TOTALSCORE, AX
  ```

- **Example Assembly Language Code**
  ```
  MOV AX, MIDSCORE
  MOV CX, FINALSCORE
  ADD AX CX
  MOV TOTALSCORE, AX
  ```

- **TotalScore Calculation**
 \[
 \text{TotalScore} = \text{MidScore} + \text{FinalScore}
 \]
Check if a number is a prime.
Tell me how to determine step by step.

2, 3, 5, 13, 89, 233, 1597, 28657, 514229, 433494437, 2971215073, 99194894755497, 106634041749171059581572169, ...

Problem Solving with Computer: Example
Recall what a prime number is.

A prime number is a natural number that has exactly two distinct natural number divisors: 1 and itself.
A straightforward (simple?) version:

- Input x
- Check if 2 divides x. If True, x is not a prime
- Check if 3 divides x. If True, x is not a prime
- ...
- Check if k divides x. If True, x is not a prime.
- If False, x is a prime.

What is k?

- the largest natural number which is at most \sqrt{x}
- Think about why??
Problem Solving with Computer: Example

Start

Declare x

Input x

2 divides x?
 T
 3 divides x?
 F
 F
 4 divides x?
 F
 F
 5 divides x?
 ...
 F
 k divides x?
 T
 x is not a prime
 F
 x is a prime
 Stop
A better version

- Line 1: Input x
- Line 2: Set k with \sqrt{x}
- Line 3: Assign 2 to n.
- Line 4: If n > k, x is a prime and goto Line 8
- Line 5: If n divides x, x is not a prime and goto Line 8
- Line 6: Increase n by 1
- Line 7: Goto Line 4
- Line 8: Stop
Start
Declare n, k
Input x
Set k with \sqrt{x}
Assign 2 to n

$n > k$?

n divides x?

$n \leftarrow n + 1$

x is a prime
x is not a prime
Stop
Flow chart:

- A type of diagram that represents an algorithm or process, showing the steps as boxes of various kinds, and their order by connecting these with arrows.

Why flow chart and algorithms?

- This diagrammatic representation can give a step-by-step solution to a given problem.
- Flowcharts are used in analyzing, designing, documenting or managing a process or program.
A sequence of instructions written for a computer to perform a specified task
A list of instructions

Program

#include <stdio.h>
#include <math.h>

main() {
 int n, k, x;
 scanf("%d", &x);
 k = sqrt(x);
 n = 2;

 label1:
 if(n > k) {
 printf("%d is a prime\n", x);
 goto label2;
 }
 if(x % n == 0) {
 printf("%d is not a prime\n", x);
 goto label2;
 }
 n = n + 1;
 goto label1;

 label2:
 return;
}
What are programs for?

```c
#include <stdio.h>
#include <math.h>

main() {
    int n, k, x;
    scanf( "%d", &x );
    k = sqrt(x);
    n = 2;

    lable1:
    if( n > x ) {
        printf( "%d prime\n", x );
        goto lable2;
    }
    n = n + 1;
    goto lable1;

    lable2: return;
}
```

test.c

test.exe
Programming

• What is programming?
 • the process of designing, writing, testing, debugging, and maintaining the source code of computer programs

• What is programming language?
 • an artificial language designed to express computations that can be performed by a computer
 • C, C++, Java, Perl, Basic, Pascal, Fortran, COBOL, ...
Homework

- **Hour of Code**
 - http://code.org
 - Tutorials for beginners
Introduction to C Language
History of C Language

- Developed at Bell Lab., 1972 for system-level programming.
- Used for implementing Unix OS

- BCPL (Basic Combined Programming Language)
 - B language (Ken Thompson)
 - C language (Dennis Ritchie)
History of C Language

- **1972: developed by Dennis Ritchie**
 - To develop an OS(Unix) for PDP-11
 - Small and efficient

- **1989: ANSI C**
 - Portable
 - (= C90 by ISO)

- **C99**
 - By ISO
 - Not by MS

- **C11**
 - By ISO
Advantages of C Language

- **Efficient**
 - Developed for low-level (machine-level) execution

- **Portability**
 - Applicable to virtually all platforms from PCs to Supercomputers

- **Powerful**
 - Provides various data types and operators

- **Flexibility**
 - Applicable from system-level to application-level programming

- **Many Standard Libraries**
 - Input/Output, String handling, Storage allocation, ...
Disadvantages of C Language

- **Error Prone**
 - Difficult to detect errors resulting from its flexibility

- **Difficulty**
 - Difficult to understand and modify it due to many functionalities
Programming Development Cycle

- **Making goals**
 - Understanding of requirements in given problems

- **Writing algorithms**
 - Writing pseudo codes or flow charts

- **Coding**
 - Translate the algorithm to C programming language

- **Compile & Link**
 - Translate a C program to machine codes

- **Execution & Debugging**
 - Test whether the program generates correct results
 - Modifying programs to correct errors found in testing

- **Maintenance**
 - Keep improving and fixing issues in the program
Programming Tools

- **Text Editor**
 - Store the written program (a simple text file) to storage
 - Replace the extension with c (e.g., filename.c)
 - Use vi or emacs editor on Unix
 - Source file means a human-readable code before compiling it

- **Preprocessor**
 - As a part of compiler, it processes the lines beginning with ‘#’ in the source code before compiling the source code
Compiler (& linker)

- Check the syntax of a source program and convert it to a machine-understandable (executable) binary language

source program

(***.c)

compiler

executable program

(~.exe)

(a.out)
Building Executable Program

Source File → Preprocessed Source File → Object File → Executable File

Preprocessing
Preprocessor
Header File

Compile
Compiler

Object File

Link
Linker
Library