Input/Output and the
Operating Systems

Review

* union
— sizeof() function

e bit fields

/O Functions

 Formatted I/O
— printf() and scanf()
— fprintf() and fscanf()
— sprintf() and sscanf()

int fprintfi(FILE *fp, const char *format, ...)}:
int fscanf(FILE *fp, const char *format, ...):

int sprintf(char *s, const char *format, ...)
int sscanf(const char *s, const char *format,

 FILE structure is defined in stdio.h
— you don’t want to know details now

» Three standard file pointers defined in stdio.h
— stdin
— stdout
— stderr

/O Functions

Declarations and initimslisations

char o ‘A, =[] = "BEloe moon!®;
Tormat Correspondi mq How it is primted Fe=mark=s

argument in 1its field
L Tad o TR Fiald width 1 by dafault
e o T AW Fiald width 2, right adjusted
-3 o R " Fimld width 3, laft adjested
L - "Blo= moonof® Fiald width 10 by dafaualt
%3= = "Blue moon!® More space needed
%.6s = "Blo= m" Fracision B
%-11. EB= = Bl moo " Pemcision 8, laft adjusted

Jeclarations and initislisations

imit i = 123;
double x = 0.12345678%;
Format Corresponding How it is primted Bemarks

Arqument in its field
%d 1 . Fimld width 3 by dafault
%05d i "ooL23¥ Fadded with zaros
%70 i n 173" Right adjusted, octal
%-9x i " Th " Laft sdjusted, haradecimel
-F9x i "ixTh " Laft sdjusted, haradecimel
%1D0.5f£ x " 0. 12346 Fiamld width 10, precisbion 5
%-12 5= x "1 .2345T7e-01 7 Laft adjuated, a-formal

char strl[]="1 2 3 go", str2[100], tmp[l00]:
int a, b, c;

gsscanf(strl, "%d%d%d%s", &ka, &, &c, tmp):
sprintf(str2, "%s %s %d %d *d\n", tmp, tmp, a, b, c):
printf("%s", str2): /* will print go go 1 2 3 */f

fopen() and fclose()

A file should be opened before being used
— why?

o After used, it is better to be closed
— to flush the buffer (fflush)

« BTW, what is a file?

— a sequence of bytes(characters)
— these bytes can be accesses sequentially/randomly

Standard Files

« The system opens the three standard files
— stdin, stdout, stderr

 printf/scanf functions work with stdout/stdin
— screen/keyboard in most cases

fopen()

FILE *fopen(const char *filename, const char *mode) ;

« performs housekeeping to use a file

— access right

— availability

— data structures for a file
successful call returns a file pointer
unsuccessful call returns NULL

mu__1 1 n

mode is either “r"” or "w" or “a

1 n

— for "w" or “a", a new file is created if it doesn't exist
‘r+" for open a text file for read/write
‘rb” to read a binary file

fseek()

— initially, fp points the beginning of the file
— the fp points the next byte to be accesses
— fseek() sets the value of fp

/* Beplicate a file with caps. Y/ fp = gfopen (argv[l], "r+");
tmp fp = tmpfile()};
finclude <ctype._h> while ({c = getc{fp)]} != EQOF)

finclude <stdio_h> putc (Coupper (c), tmp fp):
finclude <stdlik_h> rewind(tmp fpl: -
fprintf (fp, ™—\n");
FILE *gfopen (char *filename, char *mods}; while ({c = getci{tmp_fp}) != EQF)
putc (e, fpl:
int main(int argc, char **argwv) return 0;
' 1
int (o
FILE *fp, *tmp fp; FILE *gfopen(char *filename, char *mode)
(
if fargc != 2} | FILE Yfpr
fprintf(stderr, "\n%¥s%Es%s'\nin%sn\n",
"Usage: ", argv[0], " £filename", if {(fp = fopenifilename, mode)}} = HULL)
"The file will be doubled and some (
letters capitalized.™); fprintf (stderr, "Cannot open %s -
exit(l); bye!'\n", filename);

exiti{l]);

tmpfile() creates a temporary file that will be deleted when it is closed
or when the program exits

/* Wreite a file backwards. */
Finclude <stdio h>
#define MAXSTRING 100

int main(void)

{
char fname [MAXSTRTING] ;
int C;
FILE *1fp,

fprintf{stderr, "\nInput a filenamea: ");
gcanf ("#a" , fname) ;

ifp = fopen(fnams, "rb"); /* binary mode for MS DOS */
feeek(ifp, 0, SEEK END); /* move to end of the file */f
fzeek(ifp, -1, SEEE CUR); /* back up one character */
while (ftell({ifp) > 0) {
c = getc(ifp); /* mowve ahead one character */
putchar(c) ;
faeek(ifp, -2, SEEK CUR); /* back up two charactera */
}
return 0;

Executing Commands

int system(const chat *s);

« system(“date”); /* "date” is a command */
— legal set of commands differ system to system

Timing

there Is a very accurate clock inside a
computer

<time.h> file defines clock t and time_t

clock _t clock(void);
— the time used by this program

time_t time(time_t *p);
— seconds elapsed since 1/1/1970

