
Flow of Control

Flow of Control

• C is a sequential language

– statements in a program are executed one after
another

• To change flow of control, use

– choice instructions: if, switch

– iterative instructions: while, for

– OR recursion

– you may need operators

Operators for them

Relational Operators

Equality Operators

• equality expression ::=

 expression == expression |

 expression != expression

• examples
• c == „A‟

• k != 2

• x + y == 3 * z -7

• common mistakes
 = instead of ==

= =

=!

Equality Operators Examples

Logical Operators

• logical expressions
– negative !expr

– or expr || expr

– and expr && expr

• examples
!a !(x + 7.3) !(a < b || c < d)

a && b a ||b !(a<b) && c

• common mistakes
a!

a&&

a & b

& b --- this is serious

some trivial examples

some tricky examples

short-circuit

• the evaluation stops as soon as the outcome is
known

• expr1 && expr2

– if expr1 is evaluated to be false, expr2 needs not be
evaluated

• expr 1 || expr 2

The Compound Statement

• A compound statement is a series of
declarations and statements surrounded by
braces { }
 { int a, b, c;

a += b += c;

printf (“a = %d, b = %d, c = %d\n”, a, b, c);

}

• a compound is usually called “block”

• expression statements

a + b + c;

; /* empty statement */

if statement

• if (expr) (then) statement | block

• statement can be an empty one

• same for else statement

Iterative Statements

• while, for, and do statements

– provide iterative action

• goto, break, continue, return statements cause
an unconditional transfer

– SE people hate these (except return)

#include <stdio.h>

int main(void)
{
 int blank_cnt = 0, c, digit_cnt = 0,
 letter_cnt = 0, nl_cnt = 0, other_cnt = 0;

 while ((c = getchar()) != EOF) /* braces not necessary */
 if (c == ' ')
 ++blank_cnt;
 else if (c >= '0' && c <= '9')
 ++digit_cnt;
 else if (c >= 'a' && c <= 'z' || c >= 'A' && c <= 'Z')
 ++letter_cnt;
 else if (c == '\n')
 ++nl_cnt;
 else
 ++other_cnt;

 printf("%10s%10s%10s%10s%10s%10s\n\n",
 "blanks", "digits", "letters", "lines", "others", "total");
 printf("%10d%10d%10d%10d%10d%10d\n\n",
 blank_cnt, digit_cnt, letter_cnt, nl_cnt, other_cnt,
 blank_cnt + digit_cnt + letter_cnt + nl_cnt + other_cnt);
 return 0;
}

for statements

• comma operators
for (sum = 0, i = 1; i <= n; ++i)

sum += i;

for (sum = 0, i = 1; i <= n; sum += i, ++i)

do statement

• a variant of while statement

– do { statements } while expr

– the block is executed first, and then the expr is
evaluated

– you should be able to convert do statement to
while statement, and vice versa

goto statement

• jump to a label

– goto label;

– label: /* label is an identifier */

• it is considered to be harmful, but

break statement

• an exit from a loop

continue statement

• stop the current iteration and goto the next
iteration

switch statement

• switch (expr1) /* must be integral */

– goto the matched case label

conditional operators

x = (y < z) ? y : z

if (y < z) x = y; else x = z;

