
Functions

Flow of Control Review

• while

• for

• do while

• goto

• break & continue

• switch

• Relational operators

• short circuits

Functions

• To avoid repetitive similar code

• To structure the whole program as “top-down”
approach

– Breaking up a large problem into smaller pieces and
break each piece into smaller ones until each piece
is readily expressed in code

– Each piece should be concise and logical entity

header

body

Function Definition

• function type

– Type of the return value, if any

– If missing, it is assumed to be int

• parameters are placeholders for values that are
passed to the function when it is invoked

• return statements
return;

return a+b;

return (a+b);

Function Prototypes

• Each function should be declared before it is
used

– what if your program structure is top down?

– some people prefer bottom-up approaches

• Usually, they are placed before the main()
function

• Parameter names can be omitted (ANSI C)

– parameters can be omitted (old C)

#include <stdio.h>

#define N 7

long power(int, int);
void prn_heading(void);
void prn_tbl_of_powers(int);

int main(void)
{
 prn_heading();
 prn_tbl_of_powers(N);
 return 0;
}

void prn_heading(void)
{
 printf("\n::::: A TABLE OF
POWERS :::::\n\n");
}

void prn_tbl_of_powers(int n)
{
 int i, j;

 for (i = 1; i <= n; ++i) {
 for (j = 1; j <= n; ++j)
 if (j == 1)
 printf("%ld", power(i, j));
 else
 printf("%9ld", power(i, j));
 putchar('\n');
 }
}

long power(int m, int n)
{
 int i;
 long product = 1;

 for (i = 1; i <= n; ++i)
 product *= m;
 return product;
}

Function Invocation

• The program starts by invoking the main
function

• parameters are passed as call-by-value

– you can implement call-by-reference with pointers

#include <stdio.h>

int main(void)
{
 int n = 3, sum, compute_sum(int);

 printf("%d\n", n); /* 3 is printed */
 sum = compute_sum(n);
 printf("%d\n", n); /* 3 is printed */
 printf("%d\n", sum); /* 6 is printed */
 return 0;
}

int compute_sum(int n) /* sum the integers from 1 to n */
{
 int sum = 0;

 for (; n > 0; --n) /* stored value of n is changed */
 sum += n;
 return sum;
}

Developing a Large Program

• Usually developed by several teams

• Comprises many .h and .c files
– each .c file can be compiled separately

• gcc –o pgm main.c fct.c wrt.c

Assertion

• you can make sure a certain condition holds
true at any place of program

– it is a macro defined in the header file assert.h

– assert(expression);

– if the value of the expression is zero abort the
program

Scope Rules

• identifiers are accessible only within the block
where they are defined

– they are invisible from outside

Storage Classes

• Every variable and functions in C has two
arrributes: type and storage class

• Storage Classes

auto extern register static

auto

• the most common class
– variables defined inside a function

– variables defined outside a function are global

• default class – you may omit it

• the memory space is allocated/released when
the function is invoked/exited

• when a function is reentered, the previous
values are unknown

external

• global

• they may be defined somewhere else (in
another file)

• they never disappear

– transmit values across functions

• they may be hidden by re-declaration, but they
are not destroyed

CC = gcc
CFLAGS = -Wall
EXEC = a.out
INCLS =
LIBS =

OBJS = main.o fct.o

$(EXEC): $(OBJS)
 @echo "linking ..."
 @$(CC) $(CFLAGS) -o $(EXEC) $(OBJS) $(LIBS)

$(OBJS):
 $(CC) $(CFLAGS) $(INCLS) -c $*.c

relink:
 @echo "relinking ..."
 @$(CC) $(CFLAGS) -o $(EXEC) $(OBJS) $(LIBS)

#include <stdio.h>

int a = 1, b = 2, c = 3; /* external variables */
int f(void);

int main(void)
{
 printf("%3d\n", f());
 printf("%3d%3d%3d\n", a, b, c);
 return 0;
}

int f(void)
{
 extern int a; /* look for it elsewhere */
 int b, c;

 a = b = c = 4;
 return (a + b + c);
}

fct.c

main.c

register

• allocate this variable on a register

• to speed up the execution

• not always possible to find a register

• tricky for memory-IO operations

static

• to preserve the value even after the function exits
– extern does the same

• to control visibility of variable and functions
– “static extern” - visible only within the same source file

void f(void)
{
 static int cnt = 0;

 ++cnt;
 if (cnt %2 == 0)

 else

}

static int seed = 100;
/* static extern – external, but invisible from other files */

int random(void)
{
 seed = 25173 * seed + 13849;

}

/* function g() can be seen only within this file */
static int g(void)
{

}

void f(int a)
{

}

