
Pointers

Review

• recursion

– scoping rule enforced by auto class

– solution formation

• arrays and pointers

• call-by-reference

Relation between Arrays and Pointers

• int a[10], i;

– a[i] is equivalent to *(a + i)

• int i, *p

– p[i] is equivalent to *(p + i)

– a + i is equivalent to &a[i]

Arrays as Function Arguments

• When an array is passed as an argument to a
function, the base address value is passed.

– the array elements are not copied

• equivalent function headers
double sum(double a[], int n);

double sum(double *a, int n)

Dynamic Memory Allocation

• The standard C lib contains

void * calloc(int n, int m)

void * malloc(int m);

– if failed, NULL is returned

• calloc (n, m) is equivalent to

p = malloc (n*m)

memset(p, 0, m*n);

Memory Release

• You‟d better free the allocated space

– free(p);

– p must be the pointer to the space allocated by
calloc() or malloc()

• If you forget to free,

– it will be freed when the process exits for some
systems like Linux, Windows

– for some other systems, nothing is guaranteed

Strings

• review

– char *p = “abcde”;

– char s[] = “abcde”;

– char s[] = {„a‟, „b‟, „c‟, „d‟, „e‟, „\0‟};

String Functions

• ANSI C Lib contains many useful functions

– char *strcat(char *s1, const char *s2);
• result is in *s1

• what if there is no space after s1?

– int strcmp(const char *s1, const char *s2);
• returns negative, zero, positive depending on the

lexicographical order

– char *strcpy(char *s1, const char *s2);
• copy s2 to s1

• what if s2 is longer than s1?

– size_t strlen(const char *s);
• size_t is usually unsigned int

Multidimensional Arrays

• An array of arrays can be created

– double a[3][7];

– it is an array of three a[7]‟s

– the base address is &a[0][0], NOT a

• You can expand it to three dimensional arrays

Initialization

Arrays of Pointers

• char *w[N];

– an array of pointers

– each pointer is to char

• ragged array

– char *p[2] = {“abc”, “1234567890”};

read the sort_words example in the textbook

Arguments to main()

• argc and argv are used for main()

– argc is the number of arguments

– argv is an array of pointers
• argv[0] is the name of the main program

• then naturally, argc >= 1

Functions as Arguments

• a function name can be passed as an argument

• think a function name as a pointer (like an array)

• (*f)(x)
– f is a pointer to a function

– *f is a function

– (*f)(x) is call to the function

• if you are still confused, just follow the example

Functions as Arguments

• double g(double) returns double

• double *g(double) returns a pointer

• equivalent function prototype definitions

const volatile

• const int N = 3;

– i cannot be changed after initialization

– i cannot be used for array definition like
• int k[N];

• extern const volatile int real_time_clock;

– this variable is modified by other part of a computer,

– but you cannot change the value, JUST READ it

