Structures and Union

Review

* bitwise operations

— you need them for performance in terms of space
and time

— shifts are equivalent to arithmetics

e enumeration
— you can define a set
— each member is represented as an integer

» preprocessor directives
— process your program before it is compiled

Structures

struct {
int day, month, vyear;
char day_name[4]; /¥
char month_name[4]: S

} yesterday, today, tomorrow;

struct date {

int day, month, year;
char day_name[4]; /¥
char month_name[4]; /*

};

Mon, Tue, Wed,
lan, Feb, Mar,

Mon, Tue, Wed,
Jan, Feb, Mar,

struct date yesterday, today, tomorrow;

« Like enum, it may define a new type
« Aggregate variables of different types
« Each member of a structure can be

— array
— structure
— arrays of structures

etcC.
etc.

eTcC.
etc.

¥/
*/

Accessing a member

#define CLASS_SIZE 100

struct student {

char *last_name; tmp.grade = 'A';
nt student_id; tmp.last_name = "Casanova";
char grade; tmp.student_id = 910017;

bi

e dot (.) operator
— structure_name.member_name
— e.g) yesterday.year

e -> operator
— pointer_to_structure->member_name
— IS same as
— (*pointer_to_structure).member_name

In file complex.h

struct complex {
double re; /* real part */
double im; J¥ imag part *#/

1

#include "complex.h"

¥a1d add(complex *a, complex *b, complex *c) /Fa=Db+c*f
a->re=>b->re+c-> re;
ad > 1Im=>b ->im + ¢ -> im:

}

e o ee—— ’
Declarations and assignments

—---—-——u-u___.___—__——__——_T
struct student tmp, *p = &tmp;

tmp.grade = "A";
tmp.last_name = "Casanova";
:tmp.atudent_id = 910617 ;

Expression |Equivalent expression Conceptual value
tmp . grade p -> grade A

ﬁtmp,1a5t_name p > last_name Casanova
(*p).student_id p —> student_id I

p = Tast_name + 1 - (*(p -» Jast_name)) + 1 |D]
*(p ﬂimlast_ﬁﬁme + 20 Ep —» last_name)[2] s - j

Using structures

« assignment works (NOT for arrays) as long as
two variables are of the same structure type

o structure is more like a primitive type when
used as a function parameter

— call by value — the whole structure is copied
* inefficient
« this is one of reasons why there exists the -> operator

— if it contains an array, the whole array is copied

struct dept {
char dept_name[25]:
int dept_no;

I

typedef struct {
char name[25] :
int emp loyee_id:
struct dept department;
struct home_address *a_ptr:
double salary;

nnnnn

} employee_data:

« to write a function to update employee information

1. pass a structure
2. pass a pointer to structure (this is more efficient because ...

employee_data update(employee_data e)

{
printf("Input the department number: ");
scanf("%d", &n);
e.department.dept_no = n;
return e;
}

void update(employee_data *p)

aaaaa

printf("Input the department number: ");
scanf("%a", &n);
p -> department.dept_no

N3

Initialization

card ¢ = {13, 'h'}; /* the king of hearts #/

complex a[3]1[3] = {
{{1.0, -0.1}, {2.0, 9.2}, {3.0, 0.3}3},
{{4.0, -0.4}, {5.0, 0.5}, {6.0, 0.6}},
}: /¥ a[2][] is assigned zeroes */

struct fruit frt = {"plum”, 150};

struct home_address {
char “street;
char *city_and_state;
long zip_code:
} address = {"87 West Stweet", "Aspen, Colorado", B@526};

struct home_address previous_address = {8};

unions

union int or fleoat {

/* union type template declaration */
int 1;
float £;

b

e similar to structure, but

* it defines a set of alternative values that may
be stored in a shared location

« The programmer is responsible for interpreting
the value correctly

Unions

e t0O access a union member

- ->

e the memebers of a structure and or a union
can be array, structure, union

#include <stdio.h>

typedef union int_or_float {

int I
float f; : : - -
The output of this program 1s system dependent. It may print for ing
} number;
i: 4444 f: 6.227370375e-41
) i i J* same bits interpreted as float */f
int main(void) i: 1166729216 f: 4.4440000000e+03
{ /* now n.f correct but the same bits interpreted as +/
b J/* integer n.i give a garbled information * f
number n;
n.i = 4444,
printf("i: %10d f: %16.10e¥#n", n.i, n.f);
n.f = 44440;
printf("i: %10d f: %16.10e¥#n", n.i, n.f);
return O;

bit field

struct floating_number {
unsigned sign_bit : 1,
exponent : 8,
significand : 23;
}rl, r2;

A bit field is an int or unsigned member of a
structure or a union

bit fields may be unnamed

unnamed bit field of width 0 is for alignment of
the next word

restrictions
— array of bit fields
— address operator &

#include <limits.h>
#include <stdio.h>

typedef struct {
unsigned b0 :8,bl:8 b2:8 b3:8§
} word_bytes;

typedef struct {
unsigned

bO:1,bl :1,b2 :1,b3 :1,b4 :1,b5 :1, b6 :1,
b7:1,b8 :1,b9 :1,bl10:1, bll:1, bl2:1, bl3:1,
bld: 1, b15:1, bl6:1, bl7:1, bl8:1, bl9:1, b20: 1,
b21: 1, b22 :1,b23:1,b24:1, b25:1, b26:1, b27 : 1,
b28: 1, b29 : 1, b30: 1, b31;

} word_bits;

typedef uniqn { word w = {0}

nt b wbitb8 = 1;

word _bits bit; w.byte.b0 = ‘a’

word_bytes byte;
} word;

	Structures and Union
	Review
	Structures
	Accessing a member
	슬라이드 번호 5
	슬라이드 번호 6
	Using structures
	슬라이드 번호 8
	슬라이드 번호 9
	Initialization
	unions
	Unions
	슬라이드 번호 13
	bit field
	슬라이드 번호 15

