
Structures and Union

Review

• bitwise operations
– you need them for performance in terms of space

and time
– shifts are equivalent to arithmetics

• enumeration
– you can define a set
– each member is represented as an integer

• preprocessor directives
– process your program before it is compiled

Structures

• Like enum, it may define a new type
• Aggregate variables of different types
• Each member of a structure can be

– array
– structure
– arrays of structures

Accessing a member

• dot (.) operator
– structure_name.member_name
– e.g) yesterday.year

• -> operator
– pointer_to_structure->member_name
– is same as
– (*pointer_to_structure).member_name

Using structures

• assignment works (NOT for arrays) as long as
two variables are of the same structure type

• structure is more like a primitive type when
used as a function parameter
– call by value – the whole structure is copied

• inefficient
• this is one of reasons why there exists the -> operator

– if it contains an array, the whole array is copied

• to write a function to update employee information
1. pass a structure
2. pass a pointer to structure (this is more efficient because ...)

Initialization

unions

• similar to structure, but
• it defines a set of alternative values that may

be stored in a shared location

• The programmer is responsible for interpreting
the value correctly

Unions

• to access a union member
– .
– ->

• the memebers of a structure and or a union
can be array, structure, union

#include <stdio.h>

typedef union int_or_float {
 int i;
 float f;
} number;

int main(void)
{
 number n;

 n.i = 4444;
 printf("i: %10d f: %16.10e\n", n.i, n.f);
 n.f = 4444.0;
 printf("i: %10d f: %16.10e\n", n.i, n.f);
 return 0;
}

bit field

• A bit field is an int or unsigned member of a
structure or a union

• bit fields may be unnamed
• unnamed bit field of width 0 is for alignment of

the next word
• restrictions

– array of bit fields
– address operator &

struct floating_number {
 unsigned sign_bit : 1,
 exponent : 8,
 significand : 23;
} r1, r2;

#include <limits.h>
#include <stdio.h>

typedef struct {
 unsigned b0 : 8, b1 : 8, b2 : 8, b3 : 8;
} word_bytes;

typedef struct {
 unsigned
 b0 : 1, b1 : 1, b2 : 1, b3 : 1, b4 : 1, b5 : 1, b6 : 1,
 b7 : 1, b8 : 1, b9 : 1, b10 : 1, b11 : 1, b12 : 1, b13 : 1,
 b14: 1, b15 : 1, b16 : 1, b17 : 1, b18 : 1, b19 : 1, b20 : 1,
 b21: 1, b22 : 1, b23 : 1, b24 : 1, b25 : 1, b26 : 1, b27 : 1,
 b28: 1, b29 : 1, b30 : 1, b31;
} word_bits;

typedef union {
 int i;
 word_bits bit;
 word_bytes byte;
} word;

word w = {0};
w.bit.b8 = 1;
w.byte.b0 = ‘a’;

	Structures and Union
	Review
	Structures
	Accessing a member
	슬라이드 번호 5
	슬라이드 번호 6
	Using structures
	슬라이드 번호 8
	슬라이드 번호 9
	Initialization
	unions
	Unions
	슬라이드 번호 13
	bit field
	슬라이드 번호 15

