
Pointers and Dynamic
Arrays
Week 12
2017 Fall

Computer Programming for Engineers

Cassiano Campes <cassianocampes@gmail.com>
Yoohyuk Lim <dburg3065@gmail.com>

mailto:cassianocampes@skku.edu

Problem 1:
Polynomial Problem

Problem 1: Polynomial Problem

● Use dynamic arrays to implement a polynomial class

- Constructors:
- Polynomial() as default constructor;

- Private members:
- Index coefficient - integer value;
- X value - pointer integer value;

- Public members:
- Get/Set index coefficient;
- Get/Set index value;

Class Polynomial

main() must have the variable that stores
the value of X

Problem 1: Polynomial Problem

● We read a string with the values from the user:

2 7 5 4 2 9 0

First value
indicates the X

value of the
polynomial

Problem 1: Polynomial Problem

● We read a string with the values from the user:

2 7 5 4 2 9 0

Other values are
the coefficient

positions

Problem 1: Polynomial Problem

● We read a string with the values from the user:

2 7 5 4 2 9 0

Other values are
the coefficient

positions

Make sure that the
same coefficient
cannot be added

twice

Problem 1: Polynomial Problem

● We read a string with the values from the user:

2 7 5 4 2 9 0

Other values are
the coefficient

positions

Make sure that the
same coefficient
cannot be added

twice

If a alphabetic string
is used, then the
program should

return 0, as shown in
the Quiz output

example.

Problem 1: Polynomial Problem

● We read a string with the values from the user:

2 7 5 4 2 9 0

f(x) = x9 + x7 + x5 + x4 + x2 + x0

Problem 1: Polynomial Problem

● We read a string with the values from the user:

2 7 5 4 2 9 0

f(2) = 29 + 27 + 25 + 24 + 22 + 20

Problem 1: Suggestions

1. Use getline(cin, input) to read the string from user

2. To get the individual values from the read input we can use

stringstream:

3. You could use vectors to store the read value

temporarily in this example

string input;
getline(cin, input);
stringstream stream(input);
while(1) {
 int n;
 stream >> n;
 if(!stream) break;
 // … do whatever you want with ‘n’
}

Problem 1: Suggestions

4. After you have read the values, you must identify and remove

the numbers that are repeated;

a. If you used vector to store numbers temporarily, then:
int size = vec.size();
for (int i …) {
 for (int j …) {
 if (vec[j] is equal to vec[i])
 vec.erase(vec.begin() + j);

if(size != vec.size()) {
 --j; size = vec.size();

/* because we removed an entry, we need to update index */
 }
 }
}

Problem 1: Suggestions

4. After you have read the values, you must identify and remove

the numbers that are repeated;

a. If you used vector to store numbers temporarily, then:

5. Then you can create the dynamic array that

stores the necessary number of polynomial;

int size = vec.size();
for (int i …) {
 for (int j …) {
 if (vec[j] is equal to vec[i])
 vec.erase(vec.begin() + j);

if(size != vec.size()) {
 --j; size = vec.size();

/* because we removed an entry, we need to update index */
 }
 }
}

It erases the repeated number

Problem 2:
Polynomial Using Linked list

Problem 2: What are Linked Lists?

● Linked lists are one of the most famous data structures

- next

Data
- next

Data
- next

Data

Head Tail

Problem 2: Polynomial Using Linked list

● Let’s develop our number list using linked lists;

- Pointer to the X value;
- Integer to store the coefficient;
- Pointer to next structure Todo;

structure Polynomial

- Constructors:
- List() as default constructor;

- Private members:
- Pointer to head and tail struct Polynomial;

- Public members:
- Add an polynomial to the list;
- Return the head pointer to the list;

Class List()

Problem 2: Suggestions

Head Tail

Empty list!

NULL NULL

Problem 2: Suggestions

- next

Data

Head Tail

Adding an entry to the list!

NULL

Dynamically
allocate and
initialize the

structure

NULL NULL

Problem 2: Suggestions

- next

Data

Head Tail

Adding an entry to the list!

NULL

Problem 2: Suggestions

- next

Data

Head Tail

Adding an entry to the list!

NULL - next

Data

Dynamically
allocate and
initialize the

structure

NULL

Problem 2: Suggestions

- next

Data

Head Tail

Adding an entry to the list!

- next

Data

Dynamically
allocate and
initialize the

structure

NULL

Problem 2: Suggestions

- next

Data

Head Tail

Adding an entry to the list!

- next

Data

Dynamically
allocate and
initialize the

structure

NULL

Problem 2: Suggestions

- next

Data

Head Tail

Iterating in the list!

- next

Data

Get the pointer to
the head node

NULL

Problem 2: Suggestions

- next

Data

Head Tail

Iterating in the list!

- next

Data
NULL

Now we are here,
to go to the next,

we access the next
pointer

Problem 2: Suggestions

- next

Data

Head Tail

Iterating in the list!

- next

Data
NULL

We are in the last,
we need to have a

stop condition!
How?

