
PROCESS INFORMATION 
UNIX Programming 2014 Fall by Euiseong Seo 



Environment 

¨  Each process has an environment, which is inherited 
from parent process 

¨  Environment is a NULL-terminated array of strings 
¤ extern char **environ;


¨  Environment strings are of the form ‘VAR=value’ 
¤ Variable names are capitalized by convention 



Reading Environment 

¨  getenv(3) retrieves value associated with a variable 
#include <stdlib.h> !
!
char *getenv(const char *name); !
!
char *value; !
!
value=getenv("HOME"); !
if (value == NULL) !
    printf("HOME not defined.\n"); !
else if (*value == '\0') !
    printf("HOME defined but has no value.\n"); !
else!
    printf("HOME=%s\n", value); 



Adding Environment 

¨  putenv(3) adds a var-value pair to environment 

¨  setenv(3) also adds a var-value pair to environment 

int putenv(const char *string) !
!
putenv("HOME=/tmp"); !

#include <stdlib.h> !
!
int setenv(const char *name, const char *value, int overwrite) !



Removing environment 

¨  unsetenv(3) deletes a given variable from 
environment 

¨  clearenv(3) clears all environment contents 

#include <stdlib.h> !
!
int unsetenv(const char *name); !



Processing Arguments 

¨  getopt(3) function provides a way to handle 
arguments 

¨  Prototype 

¤ optind: index of the next argv element to be processed 
¤ optarg: pointer of argument for option 

#include <unistd.h> !
!
int getopt(int argc, char * const argv[], const char *optstring); !
!
extern char *optarg; !
extern int optind, opterr, optopt; 



Processing Arguments 

¨  Example 

while((opt = getopt(argc, argv, "hvf:")) != -1) !
{ !
    switch(opt) !
    { !
        case 'h': !
            help(); !
            break; !
        case 'v': !
            version(); !
            break; !
        case 'f': !
            memcpy(file_name, optarg, 16); !
            break; !
    } !
} 



Process IDs and Process Group IDs 

¨  Session ID 
¤  A process has a session ID 
¤  A session ID is set following the PID of session leader 
¤  Session leader = login shell 
¤  When a user log out every process in the session gets SIGQUIT signal 

¨  Process group 
¤  A process belongs to a process group 
¤  A process group has a group leader 
¤  PGID = PID of group leader 
¤  Signals can be propagated to all processes in a group 
¤  This is for job controlling  
¤  All processes in this command belong to the same process group 

n  cat ship-inventory.txt |grep booty |sort




Process IDs and Process Group IDs 

foreground. Figure 5-1 illustrates the relationship between sessions, process groups,
processes, and controlling terminals.

Figure 5-1. Relationship between sessions, process groups, processes, and controlling
terminals

Linux provides several interfaces for setting and retrieving the session and process group
associated with a given process. These are primarily of use for shells, but can also be
useful to processes such as daemons that want to get out of the business of sessions and
process groups altogether.

Session System Calls
Shells create new sessions on login. They do so via a special system call, which makes
creating a new session easy:

#include <unistd.h>

pid_t setsid (void);

A call to setsid() creates a new session, assuming that the process is not already a
process group leader. The calling process is made the session leader and sole member
of the new session, which has no controlling tty. The call also creates a new process
group inside the session and makes the calling process the process group leader and
sole member. The new session’s and process group’s IDs are set to the calling process’s
pid.

In other words, setsid() creates a new process group inside of a new session and makes
the invoking process the leader of both. This is useful for daemons, which do not want
to be members of existing sessions or to have controlling terminals, and for shells, which
want to create a new session for each user upon login.

Sessions and Process Groups | 169

Daemon session 

Normal session 



Process IDs and Process Group IDs 

¨  getpid(2) returns PID 
¨  getppid(2) returns PID of parent process 
¨  Prototype 

 
¨  Example 

#include <sys/types.h> !
#include <unistd.h> !
!
pid_t getpid(void); !
pid_t getppid(void); 

#include <sys/types.h> !
main() !
{ !
    printf("My PID is %d.\n", getpid()); !
    printf("My PPID is %d.\n", getppid()); !
} 



Process IDs and Process Group IDs 

¨  getpgrp(2) returns process group ID 
¨  setpgid(2) creates a new process group 
¨  Prototype 

 

 

int setpgrp(void); !
int setpgid(pid_t pid, pid_t pgid); !



Real and Effective IDs 

¨  Real UID and GID can be obtained by getuid(2) 
and getgid(2), respectively 

¨  Effective UID and GID can be obtained by 
geteuid(2) and getegid(2), respectively 

¨  Prototype 
#include <sys/types.h> !
uid_t getuid(void); !
gid_t getgid(void); !
uid_t geteuid(void); !
gid_t getegid(void); !



Resource Limits 

¨  UNIX enforces resource usage limit on each process 
¨  Many resource limits are shown by ulimit(1)




Resource Limits 

¨  Hard limit 
¤ Root can lower or raise 
¤ Users can lower but not raise again 

¨  Soft limit 
¤ User can lower or raise (up to hard limit) 
¤ Root can lower or raise 

¨  Limits are inherited to the child processes 



Resource Limits 

Resource Macro Meaning Signal Errno 

RLIMIT_CORE 
Maximum size of a core file in 
bytes that may be created by 
a process 

RLIMIT_CPU 
Maximum amount of CPU time 
in seconds used by a process SIGXCPU 

RLIMIT_DATA 
Maximum size of process’s 
heap in bytes ENOMEM 

RLIMIT_NOFILE 
Maximum number of open file 
descriptors 

RLIMIT_STACK 
Maximum size of a process’s 
stack in bytes SIGSEGV 

RLIMIT_NPROC 
Maximum number of processes 
that can be created for a UID EAGAIN 



Resource Limits 

¨  Prototype 
#include <sys/time.h> !
#include <sys/resource.h> !
!
int getrlimit(int resource, struct rlimit *rlim); !
int setrlimit(int resource, const struct rlimit *rlim); !
!
struct rlimit { !
    rlim_t rlim_cur;  /* Soft limit */!
    rlim_t rlim_max;  /* Hard limit (ceiling for rlim_cur) */!
}; 



Resource Limits 

¨  Example 
#include <sys/resource.h> !
#include <unistd.h> !
main() !
{ !
    struct rlimit myrlim; !
    !
    getrlimit(RLIMIT_NOFILE, &myrlim); !
    printf("I can only open %d files\n", myrlim.rlim_cur); !
    myrlim.rlim_cur = 256; !
    if(setrlimit(RLIMIT_NOFILE, &myrlim) == -1) !
        perror("setrlimit"); !
    getrlimit(RLIMIT_NOFILE, &myrlim); !
    printf("I can now open %d files.\n", myrlim.rlim_cur); !
    printf("sysconf() says %d files.\n", sysconf(_SC_OPEN_MAX)); !
} 



Time Usage 

¨  You can determine the time usage of a process with 
times(2)

¤ Time reported by times(2) is in clock ticks 
¤ You have to convert clock ticks to second 

¨  Prototype 
#include <sys/times.h> !
!
clock_t times(struct tms *buf); !
!
struct tms { !
    clock_t tms_utime;  /* user time */!
    clock_t tms_stime;  /* system time */!
    clock_t tms_cutime; /* user time of children */!
    clock_t tms_cstime; /* system time of children */!
}; 



Time Usage 

¨  Types of time 
¤ Wall-clock time: time spent in real world 

n Return value of times shows elapsed wall-clock time from 
an arbitrary time point 

¤ User time: time spent in user-level 
¤ System time: time spent in kernel-level 
¤ User time of children: time spent by terminated and 

cleaned up children in user-level 
¤ System time of children: time spent by terminated and 

cleaned up children in kernel-level 



Time Usage 

¨  Example 
#include <sys/types.h> !
#include <sys/times.h> !
#include <unistd.h> !
!
main() !
{ !
    int m; !
    time_t t; !
    struct tms mytms; !
    clock_t time1, time2; !
    double tick = sysconf(_SC_CLK_TCK); !
    if((time1 = times(&mytms)) == -1) !
        { perror("times"); exit(1); } !
    for( m = 0 ; m < 99999; m++) !

{ time(&t); } !
    if((time2 = times(&mytms)) == -1) !
        { perror("times"); exit(1); } !
    printf("Real time: %.1f sec.\n", (time2-time1)/tick); !
    printf("User time: %.1f sec.\n", mytms.tms_utime/tick); !
    printf("Sys time: %.1f sec.\n", mytms.tms_stime/tick); !
} 



Current Directory 

¨  getcwd(3) retrieves current working directory 
¨  chdir(2) changes current working directory 
¨  Prototype 

#include <unistd.h> !
!
char *getcwd(char *buf, size_t size); !
int chdir(const char *path); 



Current Directory 

¨  Example 
#include <sys/param.h> !
#include <unistd.h> !
main() !
{ !
    char *dir; !
    long pathmaxlen = pathconf("/", _PC_PATH_MAX); !
    dir=getcwd((char *)NULL, pathmaxlen+1); !
    if(dir==NULL) !
    {perror("getcwd"); exit(1)} !
    printf("CWD: %s\n", dir); !
    free(dir); !
    if(chdir("/tmp") == -1) !
        perror("chdir"); !
    dir=getcwd((char *)NULL, pathmaxlen+1); !
    if(dir==NULL) !
        perror("getcwd"); !
    printf("CWD: %s\n", dir); !
} 



Shell Lab 

¨  Skeleton of a shell is very simple 

¨  Let’s make a shell! 

while(1) { !
    print prompt !
    read command !
    process command !
} 


