Disks

Jin-Soo Kim (jinsookim@skku.edu)
Computer Systems Laboratory
Sungkyunkwan University
http://csl.skku.edu
Disk Storage (1)

- Nonvolatile, rotating magnetic storage
Disk Storage (2)

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Seagate ST3000655SSS</th>
<th>Seagate ST31000340NS</th>
<th>Seagate ST973451SS</th>
<th>Seagate ST9160821AS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disk diameter (inches)</td>
<td>3.50</td>
<td>3.50</td>
<td>2.50</td>
<td>2.50</td>
</tr>
<tr>
<td>Formatted data capacity (GB)</td>
<td>147</td>
<td>1000</td>
<td>73</td>
<td>160</td>
</tr>
<tr>
<td>Number of disk surfaces (heads)</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Rotation speed (RPM)</td>
<td>15,000</td>
<td>7200</td>
<td>15,000</td>
<td>5400</td>
</tr>
<tr>
<td>Internal disk cache size (MB)</td>
<td>16</td>
<td>32</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>External interface, bandwidth (MB/sec)</td>
<td>SAS, 375</td>
<td>SATA, 375</td>
<td>SAS, 375</td>
<td>SATA, 150</td>
</tr>
<tr>
<td>Sustained transfer rate (MB/sec)</td>
<td>73–125</td>
<td>105</td>
<td>79–112</td>
<td>44</td>
</tr>
<tr>
<td>Minimum seek (read/write) (ms)</td>
<td>0.2/0.4</td>
<td>0.8/1.0</td>
<td>0.2/0.4</td>
<td>1.5/2.0</td>
</tr>
<tr>
<td>Average seek read/write (ms)</td>
<td>3.5/4.0</td>
<td>8.5/9.5</td>
<td>2.9/3.3</td>
<td>12.5/13.0</td>
</tr>
<tr>
<td>Mean time to failure (MTTF) (hours)</td>
<td>1,400,000 @ 25°C</td>
<td>1,200,000 @ 25°C</td>
<td>1,600,000 @ 25°C</td>
<td>—</td>
</tr>
<tr>
<td>Annual failure rate (AFR) (percent)</td>
<td>0.62%</td>
<td>0.73%</td>
<td>0.55%</td>
<td>—</td>
</tr>
<tr>
<td>Contact start-stop cycles</td>
<td>—</td>
<td>50,000</td>
<td>—</td>
<td>>600,000</td>
</tr>
<tr>
<td>Warranty (years)</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Nonrecoverable read errors per bit read</td>
<td><1 sector per 10(^{16})</td>
<td><1 sector per 10(^{15})</td>
<td><1 sector per 10(^{16})</td>
<td><1 sector per 10(^{14})</td>
</tr>
<tr>
<td>Size: dimensions (in.), weight (pounds)</td>
<td>1.0" * 4.0" * 5.8", 1.5 lbs</td>
<td>1.0" * 4.0" * 5.8", 1.4 lbs</td>
<td>0.6" * 2.8" * 3.9", 0.5 lbs</td>
<td>0.4" * 2.8" * 3.9", 0.2 lbs</td>
</tr>
<tr>
<td>Power: operating/idle/standby (watts)</td>
<td>15/11/—</td>
<td>11/8/1</td>
<td>8/5.8/—</td>
<td>1.9/0.6/0.2</td>
</tr>
<tr>
<td>GB/cu. in., GB/watt</td>
<td>6 GB/cu.in., 10 GB/W</td>
<td>43 GB/cu.in., 91 GB/W</td>
<td>11 GB/cu.in., 9 GB/W</td>
<td>37 GB/cu.in., 84 GB/W</td>
</tr>
<tr>
<td>Price in 2008, $/GB</td>
<td>~$250, ~$1.70/GB</td>
<td>~$275, ~$0.30/GB</td>
<td>~$350, ~$5.00/GB</td>
<td>~$100, ~$0.60/GB</td>
</tr>
</tbody>
</table>
Disk Storage (3)

- Hard disk internals

- Our Boeing 747 will fly at the altitude of only a few mm at the speed of approximately 65mph periodically landing and taking off.
- And still the surface of the runway, which consists of a few mm-thick layers, will stay intact for years.
Each sector records
- Sector ID
- Data (512 bytes, 4096 bytes proposed)
- Error correcting code for defects & recording errors
- Synchronization fields and gaps

Access to a sector involves
- Queuing delay if other accesses are pending
- Seek: move the heads
- Rotational delay
- Data transfer
- Controller overhead
Disk Access Example

- **Given**
 - 512B sector, 15,000rpm, 4ms average seek time, 100MB/s transfer rate, 0.2ms controller overhead, idle disk

- **Average read time**
 - 4ms seek time
 + $\frac{1}{2} / (15,000/60) = 2$ms rotational latency
 + $512 / 100$MB/s = 0.005ms transfer time
 + 0.2ms controller delay
 = 6.2ms

- **If actual average seek time is 1ms**
 - Average read time = 3.2ms
Disk Performance Issues

- Manufacturers quote average seek time
 - Based on all possible seeks
 - Locality and OS scheduling lead to smaller actual average seek times

- Smart disk controller allocate physical sectors on disk
 - Present logical sector interface to host
 - SCSI, ATA, SATA

- Disk drives include caches
 - Prefetch sectors in anticipation of access
 - Avoid seek and rotational delay
Fault:
- Failure of a component
- May or may not lead to system failure

```
Service accomplishment
Service delivered as specified

Restoration

Failure

Service interruption
Deviation from specified service
```
Dependability measures

- Reliability: mean time to failure (MTTF)
- Service interruption: mean time to repair (MTTR)
- Mean time between failures
 - MTBF = MTTF + MTTR
- Availability = MTTF / (MTTF + MTTR)
- Improving availability
 - Increase MTTF: fault avoidance, fault tolerance, fault forecasting
 - Reduce MTTR: improved tools and processes for diagnosis and repair
Sources of failures

<table>
<thead>
<tr>
<th>Operator</th>
<th>Software</th>
<th>Hardware</th>
<th>System</th>
<th>Year data collected</th>
</tr>
</thead>
<tbody>
<tr>
<td>42%</td>
<td>25%</td>
<td>18%</td>
<td>Datacenter (Tandem)</td>
<td>1985</td>
</tr>
<tr>
<td>15%</td>
<td>55%</td>
<td>14%</td>
<td>Datacenter (Tandem)</td>
<td>1989</td>
</tr>
<tr>
<td>18%</td>
<td>44%</td>
<td>39%</td>
<td>Datacenter (DEC VAX)</td>
<td>1985</td>
</tr>
<tr>
<td>50%</td>
<td>20%</td>
<td>30%</td>
<td>Datacenter (DEC VAX)</td>
<td>1993</td>
</tr>
<tr>
<td>50%</td>
<td>14%</td>
<td>19%</td>
<td>U.S. public telephone network</td>
<td>1996</td>
</tr>
<tr>
<td>54%</td>
<td>7%</td>
<td>30%</td>
<td>U.S. public telephone network</td>
<td>2000</td>
</tr>
<tr>
<td>60%</td>
<td>25%</td>
<td>15%</td>
<td>Internet services</td>
<td>2002</td>
</tr>
</tbody>
</table>
RAID

- **Redundant Array of Inexpensive Disks**
 - Use multiple smaller disks as a cost-effective alternative to large expensive disks (I = Inexpensive)
 - Provide higher reliability and higher data transfer (I = Independent)
 - Parallelism improves performance
 - Plus extra disk(s) for redundant data storage
 - Improving performance via parallelism
 - Data striping: bit-level vs. block-level
 - Improving reliability via redundancy
 - Mirroring (shadowing)
 - Parity or error-correcting codes (ECCs)
RAID 0

- Non-redundant striping ("AID"?)
 - Data is broken into blocks
 - Each block is striped across multiple disks
 - I/O performance is greatly improved by spreading the I/O load across many channels and drives
 - Typically used in data rate intensive applications
 - e.g., video editing
RAID 1

- Mirrored disks
 - N + N disks
 - Expensive, highest disk overhead
 - Twice the read transaction rate of single disks, same write transaction rate as single disks
 - No rebuild is necessary in case of a disk failure
RAID 2

- Memory-style error-correcting codes (ECC)
 - N + E disks
 - Split data at bit level across N disks
 - Generate E-bit ECC
 - Too complex, not used in practice
RAID 3

- Bit-interleaved parity
 - $N + 1$ disks
 - Stripe parity is generated on writes, recorded on the parity disk and checked on reads
 - Less storage overhead than RAID 2
 - Cannot service multiple requests simultaneously
 - Not widely used
RAID 4 (1)

- Block-interleaved parity
 - N + 1 disks
 - Data striped across N disks at block level, redundant disk stores parity for a group of blocks
 - Very good read performance (same as RAID 0)
 - Writes require parity data be updated each time
 - No support for multiple simultaneous writes
RAID 4 (2)

- Writes: RAID 3 vs. RAID 4
RAID 5 (1)

- Block-interleaved distributed parity
 - N + 1 disks
 - Like RAID 4, but parity blocks distributed across disks
 - Speed up small writes in multiprocessing systems, as the parity disk does not become a bottleneck
 - Widely used
RAID 5 (2)

- RAID 4 vs. RAID 5
RAID 6

- P + Q redundancy
 - N + 2 disks
 - Block-level interleaving with two parity blocks (P, Q)
 - Continue to execute read and write requests in the presence of any two concurrent disk failures
RAID 0+1 (or RAID 01)

- Mirrored stripes
 - \(N \times 2 \) disks (\(N > 1 \))
 - Data striped across \(N \) disks, and then mirrored to another, equivalent stripe
 - A single drive failure will cause the whole array to become, in essence, a RAID 0 array
RAID 1+0 (or RAID 10)

- Striped mirrors
 - 2*N disks (N > 1)
 - Data are mirrored in pairs, and then the resulting mirror pairs are striped
 - More reliable than RAID 0+1 → fault tolerant as long as no two disks are part of the same mirror
RAID Summary

- RAID can improve performance and availability
 - High availability requires hot swapping
- Assumes independent disk failures
 - Too bad if the building burns down!
- See “Hard Disk Performance, Quality and Reliability”
Fallacies (1)

- **Disk dependability**
 - If a disk manufacturer quotes MTTF as 1,200,000hr (140yr)
 - A disk will work that long
 - Wrong: this is the mean time to failure
 - What is the distribution of failures?
 - What if you have 1000 disks?
 - How many will fail per year?

Annual Failure Rate (AFR) = \(\frac{1000 \text{ disks} \times 8760 \text{ hrs/disk}}{1200000 \text{ hrs/failure}} \) = 0.73%
Fallacies (2)

- Disk failure rates are as specified
 - Studies of failure rates in the field
 - Schroeder and Gibson: 2% to 4% vs. 0.6% to 0.8%
 - Pinheiro, et al.: 1.7% (first year) to 8.6% (third year) vs. 1.5%
 - Why?

- Always 1GB = 2^{30} Bytes
 - For bandwidth, use 1GB = 10^9 B
 - For storage, use 1GB = 10^9 B
 - A 1TB disk provides 1,000,000,000 bytes
 - 1GB = 2^{30} B = 1,073,741,824 bytes
Fallacies (3)

- **Disk scheduling**
 - Best to let the OS schedule disk accesses
 - But modern drives deal with logical block addresses
 - Map to physical track, cylinder, sector locations
 - Also, blocks are cached by the drive
 - OS is unaware of physical locations
 - Reordering can reduce performance
 - Depending on placement and caching