

Virtual Memory

Jin-Soo Kim (jinsookim@skku.edu)

Computer Systems Laboratory

Sungkyunkwan University

http://csl.skku.edu

2 ICE3003: Computer Architecture | Spring 2012 | Jin-Soo Kim (jinsookim@skku.edu)

Challenges

 Memory allocation

 Memory protection

 Limited memory size

3 ICE3003: Computer Architecture | Spring 2012 | Jin-Soo Kim (jinsookim@skku.edu)

Virtual Memory

 Use main memory as a “cache” for secondary
(disk) storage

• Managed jointly by CPU hardware and the OS

 Programs share main memory

• Each gets a private virtual address space holding its
frequently used code and data

• Protected from other programs

 CPU and OS translate virtual addresses to
physical addresses

• VM “block” is called a page

• VM translation “miss” is called a page fault

4 ICE3003: Computer Architecture | Spring 2012 | Jin-Soo Kim (jinsookim@skku.edu)

Address Translation

 Fixed-size pages (e.g., 4KB)

5 ICE3003: Computer Architecture | Spring 2012 | Jin-Soo Kim (jinsookim@skku.edu)

Page Fault Penalty

 On page fault, the page must be fetched from
disk

• Takes millions of clock cycles

• Handled by OS code

 Try to minimize page fault rate

• Fully associative placement

• Smart replacement algorithms

6 ICE3003: Computer Architecture | Spring 2012 | Jin-Soo Kim (jinsookim@skku.edu)

Page Tables (1)

 Stores placement information

• Array of page table entries, indexed by virtual page
number

• page table register in CPU points to page table in
physical memory

 If page is present in memory

• PTE stores the physical page number

• Plus other status bits (referenced, dirty, …)

 If page is not present

• PTE can refer to location in swap space on disk

7 ICE3003: Computer Architecture | Spring 2012 | Jin-Soo Kim (jinsookim@skku.edu)

Page Tables (2)

 Translation using a page table

8 ICE3003: Computer Architecture | Spring 2012 | Jin-Soo Kim (jinsookim@skku.edu)

Page Tables (3)

 Mapping pages to storage

9 ICE3003: Computer Architecture | Spring 2012 | Jin-Soo Kim (jinsookim@skku.edu)

Replacement and Writes

 To reduce page fault rate, prefer
least-recently used (LRU) replacement

• Reference bit (aka use bit) in PTE set to 1 on access
to page

• Periodically cleared to 0 by OS

• A page with reference bit = 0 has not been used
recently

 Disk writes take millions of cycles

• Block at once, not individual locations

• Use write-back: write through is impractical

• Dirty bit in PTE set when page is written

10 ICE3003: Computer Architecture | Spring 2012 | Jin-Soo Kim (jinsookim@skku.edu)

TLB (1)

 Address translation would appear to require
extra memory references

• One to access the PTE

• Then the actual memory access

 But access to page tables has good locality

• So use a fast cache of PTEs within the CPU

• Called a Translation Look-aside Buffer (TLB)

• Typical: 16-512 PTEs, 0.5-1 cycle for hit, 10-100 cycles
for miss, 0.01%-1% miss rate

• Misses could be handled by hardware or software

11 ICE3003: Computer Architecture | Spring 2012 | Jin-Soo Kim (jinsookim@skku.edu)

TLB (2)

 Fast translation using a TLB

12 ICE3003: Computer Architecture | Spring 2012 | Jin-Soo Kim (jinsookim@skku.edu)

TLB (3)

 TLB misses: if page is in memory

• Load the PTE from memory and retry

• Could be handled in hardware
– Can get complex for more complicated page table structures

• Or in software
– Raise a special exception, with optimized handler

 TLB misses: if page is not in memory (page
fault)

• OS handles fetching the page and updating the page
table

• Then restart the faulting instruction

13 ICE3003: Computer Architecture | Spring 2012 | Jin-Soo Kim (jinsookim@skku.edu)

TLB (4)

 TLB miss handler

• TLB miss indicates
– Page present, but PTE not in TLB

– Page not present

• Must recognize TLB miss before destination register
overwritten
– Raise exception

• Handler copies PTE from memory to TLB
– Then restarts instruction

– If page not present, page fault will occur

14 ICE3003: Computer Architecture | Spring 2012 | Jin-Soo Kim (jinsookim@skku.edu)

Page Fault Handler

 Handling page faults

• Use faulting virtual address to find PTE

• Locate page on disk

• Choose page to replace
– If dirty, write to disk first

• Read page into memory and update page table

• Make process runnable again
– Restart from faulting instruction

15 ICE3003: Computer Architecture | Spring 2012 | Jin-Soo Kim (jinsookim@skku.edu)

Memory Protection

 Different tasks can share parts of their virtual
address spaces

• But need to protect against errant access

• Requires OS assistance

 Hardware support for OS protection

• Privileged supervisor mode (aka kernel mode)

• Privileged instructions

• Page tables and other state information only
accessible in supervisor mode

• System call exception (e.g., syscall in MIPS)

16 ICE3003: Computer Architecture | Spring 2012 | Jin-Soo Kim (jinsookim@skku.edu)

Integrating VM and Cache (1)

 Physically
addressed caches

17 ICE3003: Computer Architecture | Spring 2012 | Jin-Soo Kim (jinsookim@skku.edu)

 Physically addressed caches (cont’d)
• Allows multiple processes to have blocks in cache at the same

time.

• Allows multiple processes to share pages.

• Address translation is on the critical path.

Memory

TLB

Page
tables

VA
PA TLB hit

TLB miss

PTE
data

Cache
PA

data

Cache
hit

Cache
miss

page
fault

Integrating VM and Cache (2)

18 ICE3003: Computer Architecture | Spring 2012 | Jin-Soo Kim (jinsookim@skku.edu)

 Virtually addressed, virtually tagged caches
• Homonym problem:

– Each process has a different translation of the same virtual address.

• Address synonyms or aliases problem.

– Two different virtual addresses point to the same physical address.

 Memory

TLB

Page
tables

VA VA
TLB hit

TLB miss

PTE
data

Cache

PA

data

Cache
hit

Cache
miss

page
fault

Integrating VM and Cache (3)

19 ICE3003: Computer Architecture | Spring 2012 | Jin-Soo Kim (jinsookim@skku.edu)

 Virtually addressed, physically tagged caches
• Use virtual address to parallel access to the TLB and cache.

• TLB produces the PFN – which must match the physical tag of
the accessed cache line for it to be a “hit”.

Memory

Cache Page
tables

VA

TLB
hit

TLB
miss

PTE

data

TLB
PA

data

Cache
miss

page
fault

VPN offset

=?

PFN

Cache
hit

PFN

Integrating VM and Cache (4)

