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Challenges 

 

 Memory allocation 

 

 Memory protection 

 

 Limited memory size 
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Virtual Memory 

 Use main memory as a “cache” for secondary 
(disk) storage 

• Managed jointly by CPU hardware and the OS 

 Programs share main memory 

• Each gets a private virtual address space holding its 
frequently used code and data 

• Protected from other programs 

 CPU and OS translate virtual addresses to 
physical addresses 

• VM “block” is called a page 

• VM translation “miss” is called a page fault 
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Address Translation 

 Fixed-size pages (e.g., 4KB) 
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Page Fault Penalty 

 On page fault, the page must be fetched from 
disk 

• Takes millions of clock cycles 

• Handled by OS code 

 

 Try to minimize page fault rate 

• Fully associative placement 

• Smart replacement algorithms 
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Page Tables (1) 

 Stores placement information 

• Array of page table entries, indexed by virtual page 
number 

• page table register in CPU points to page table in 
physical memory 

 If page is present in memory 

• PTE stores the physical page number 

• Plus other status bits (referenced, dirty, …) 

 If page is not present 

• PTE can refer to location in swap space on disk 
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Page Tables (2) 

 Translation using a page table 
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Page Tables (3) 

 Mapping pages to storage 
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Replacement and Writes 

 To reduce page fault rate, prefer 
least-recently used (LRU) replacement 

• Reference bit (aka use bit) in PTE set to 1 on access 
to page 

• Periodically cleared to 0 by OS 

• A page with reference bit = 0 has not been used 
recently 

 Disk writes take millions of cycles 

• Block at once, not individual locations 

• Use write-back: write through is impractical 

• Dirty bit in PTE set when page is written 
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TLB (1) 

 Address translation would appear to require 
extra memory references 

• One to access the PTE 

• Then the actual memory access 
 

 But access to page tables has good locality 

• So use a fast cache of PTEs within the CPU 

• Called a Translation Look-aside Buffer (TLB) 

• Typical: 16-512 PTEs, 0.5-1 cycle for hit, 10-100 cycles 
for miss, 0.01%-1% miss rate 

• Misses could be handled by hardware or software 
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TLB (2) 

 Fast translation using a TLB 
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TLB (3) 

 TLB misses: if page is in memory 

• Load the PTE from memory and retry 

• Could be handled in hardware 
– Can get complex for more complicated page table structures 

• Or in software 
– Raise a special exception, with optimized handler 

 

 TLB misses: if page is not in memory (page 
fault) 

• OS handles fetching the page and updating the page 
table 

• Then restart the faulting instruction 
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TLB (4) 

 TLB miss handler 

• TLB miss indicates 
– Page present, but PTE not in TLB 

– Page not present 

• Must recognize TLB miss before destination register 
overwritten 
– Raise exception 

• Handler copies PTE from memory to TLB 
– Then restarts instruction 

– If page not present, page fault will occur 
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Page Fault Handler 

 Handling page faults 

• Use faulting virtual address to find PTE 

• Locate page on disk 

• Choose page to replace 
– If dirty, write to disk first 

• Read page into memory and update page table 

• Make process runnable again 
– Restart from faulting instruction 
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Memory Protection 

 Different tasks can share parts of their virtual 
address spaces 

• But need to protect against errant access 

• Requires OS assistance 
 

 Hardware support for OS protection 

• Privileged supervisor mode (aka kernel mode) 

• Privileged instructions 

• Page tables and other state information only 
accessible in supervisor mode 

• System call exception (e.g., syscall in MIPS) 
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Integrating VM and Cache (1) 

 Physically 
addressed caches 
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 Physically addressed caches (cont’d) 
• Allows multiple processes to have blocks in cache at the same 

time. 

• Allows multiple processes to share pages. 

• Address translation is on the critical path. 
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Integrating VM and Cache (2) 
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 Virtually addressed, virtually tagged caches 
• Homonym problem:  

– Each process has a different translation of the same virtual address. 

• Address synonyms or aliases problem. 

– Two different virtual addresses point to the same physical address. 
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Integrating VM and Cache (3) 
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 Virtually addressed, physically tagged caches 
• Use virtual address to parallel access to the TLB and cache. 

• TLB produces the PFN – which must match the physical tag of 
the accessed cache line for it to be a “hit”. 
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Integrating VM and Cache (4) 


