Embedded Systems: Architecture

Jinkyu Jeong (jinkyu@skku.edu)
Computer Systems Laboratory
Sungkyunkwan University
http://csl.skku.edu
Designing Embedded Systems

- Requirements
- Specification
- Architecture
- Component Design
- System Integration
Basic Architectures
Control Unit

• Custom logic
• FPGAs (Field-Programmable Gate Arrays)
• Microcontrollers
• Microprocessors
• DSPs (Digital Signal Processors)
• ASIPs (Application Specific Instruction-set Processors)
• Multicore? (symmetric vs. asymmetric)
• Typical word size: 8/16/32-bit
Why Microprocessors?

• Microprocessors
 – ARM, MIPS, PowerPC, SuperH, Cell, Atom, …
 – Mostly less than 1 GHz

• Microprocessors are often very efficient
 – Can use same logic to perform many different functions

• Microprocessors simplify the design of families of products
The Performance Paradox

• Microprocessors use much more logic to implement a function than does custom logic
• But microprocessors are often at least as fast:
 – Heavily pipelined
 – Large design teams
 – Aggressive VLSI technology, …
Power

• Custom logic uses less power, but CPUs have advantages
 – Modern microprocessors offer features to help control power consumption
 – Software design techniques can help reduce power consumption

• Heterogeneous systems
 – Some custom logic for well-defined functions, CPUs + software for everything else
RAM

• SRAM
 – Easier to integrate on the same chip as processor

• DRAM
 – SDRAM (Synchronous DRAM): SDR/DDR/DDR2/DDR3
 – Mobile SDR/DDR SDRAM
 – RDRAM (Rambus DRAM)

• NVRAM (Non-Volatile RAM)

• Future NVRAMs: PRAM, MRAM, FeRAM

• Cache memory

• SPM (Scratch Pad Memory)
ROM

• Mask-programmed
 – Connections programmed at fabrication

• OTP (One-time programmable) ROM
 – Connections programmed after manufacture by user

• EPROM (Erasable programmable ROM)

• EEPROM (Electrically erasable programmable ROM)
Flash Memory

- NOR Flash
- NAND Flash
- e-MMC
- UFS
- Cards (MMC, SD, CF, …)
Interfacing

- ARM AMBA (Advanced Microcontroller Bus Architecture)
- ISA (Industry Standard Architecture)
- PCI (Peripheral Component Interconnect)
- \(I^2C \) (Inter-IC) bus
- USB
Common Peripheral Devices

- Interrupt controller
- DMA controller
- Timer/Counter
- Real-time clock
- Watchdog timer
- UART (Universal Asynchronous Receiver Transmitter)
- IrDA (Infrared)
- Ethernet (wired/wireless)
- Bluetooth
Recent Trends

• Increasing computation demands
• Increasingly networked
• Increasing need for flexibility

• Getting complex
• Increasingly platform-based
 – Hardware architecture + associated software
SoC (System-On-a-Chip)

- Samsung Exynos 7420

Source: http://www.anandtech.com/show/9330/exynos-7420-deep-dive
Introduction to the ARM Architecture
Overview (1)

• **Advanced RISC Machine**

• **The most widely used 32-bit ISA**
 - 98% of the more than 1 billion mobile phones sold used at least one ARM processor (2005)
 - 4 billion shipped in 2008
 - 90% of all embedded 32-bit RISC processors (2009)

• **ARM architecture has been extended over several versions.**
Overview (2)

- ARM processors developed by licensees
 - DEC StrongARM
 - Marvell (formerly Intel) Xscale
 - Nintendo
 - TI OMAP
 - Qualcomm Snapdragon
 - Samsung Hummingbird/Exynos
 - Apple A4/A5/A5X/A6/A7…
 - Nvidia Tegra
 - Applied Micro X-Gene
ARM Design Goals

• High performance

• Small code size

• Low power consumption

• Small silicon area
Application Processors

- **iPhone 3GS (600MHz)**
- **iPhone 4 (clock speed not disclosed, 800MHz?)**
- **iPad (1GHz)**
- **Samsung Galaxy S (1GHz)**
- **Samsung Galaxy Tab 7” (1GHz)**
- **iPhone 4S (dual-core, 800MHz)**
- **iPad 2 (dual-core, 1GHz)**
- **New iPad (dual-core, 1GHz)**
- **Galaxy S2 (dual-core, 1.2GHz)**
- **Galaxy S3 (quad-core, 1.4GHz)**
- **Galaxy S4 (quad-core 1.6GHz + quad-core 1.2GHz Cortex-A7)**

Performance, Functionality vs. Capability
Embedded Processors

Classic ARM Processors
- ARM7TDMI-S
- ARM946-S
- ARM968-S

Embedded Cortex Processors
- Cortex-M0
- Cortex-M1
- Cortex-M3
- Cortex-M4
- Cortex-R4
- Cortex-R5
- Cortex-R7

Performance, Functionality vs. Capability
Processors Lineup

- Classic ARM Processors
 - ARMv4T
 - ARMv5TJ
 - ARMv6
 - ARM11MP
 - ARM1176JZ
 - ARM1136J
 - ARM1156T2
 - ARM926
 - ARM968
 - ARM946

- Application Cortex Processors
 - Cortex-A15
 - Cortex-A9
 - Cortex-A8
 - Cortex-A5
 - Cortex-R7
 - Cortex-R5
 - Cortex-R4
 - SC300
 - Cortex-M3
 - Cortex-M1
 - Cortex-M4
 - Cortex-M0

- Embedded Cortex Processors
 - ARMv7M/ME
 - ARMv6M
 - Thumb
 - Thumb-2
 - Thumb-2 Mixed ISA
 - VFPv2
 - VFPv3
 - Jazelle
 - Jazelle
 - TrustZone
 - TrustZone
 - SIMD
 - NEON
 - Virtualization

ICE3028: Embedded Systems Design, Fall 2018, Jinkyu Jeong (jinkyu@skku.edu)
ARM 7TDMI-S

- Implements the ARMv4T architecture
- Applications
 - iPod from Apple
 - Nintendo DS & Game Boy Advance
 - Most of Nokia’s mobile phones
 - Lego Mindstorms NXT
 - iriver portable digital audio players
 - Roomba 500 series from iRobot
Thumb Instruction Sets

• 16-bit instruction set
• A subset of the most commonly used 32-bit ARM instructions
• Significantly improved code density at a cost of some reduction in performance
 – Typically 65% of the ARM code size
 – 160% performance of the ARM code when running from a 16-bit memory system
• Transparently decompressed to full 32-bit ARM instructions in real time, without performance loss
 – ARM instructions only for performance critical segments
Memory Architectures
Minimalist Approach

• Pros
 – Simple, easy to design

• Cons
 – Limited ROM size
 – Limited SRAM size
 – No firmware upgrades
NOR XIP

• Pros
 – Simple, easy to design
 – Execute-In-Place (XIP)
 – Predictable read latency
 – Code + Storage in NOR
 – Firmware upgrades

• Cons
 – Slow read speed
 – Much slower write speed
 – The high cost of NOR
NOR Shadowing

• Pros
 – Faster read and write
 – Easy boot-up
 – Use a relatively pricey NOR only to boot up the system
 – Code can be compressed

• Cons
 – Larger DRAM needed
 – Require more design time
 – Not energy efficient
NAND Shadowing

• Pros
 – Faster read and write
 – Cost effective
 – NAND for both code and data storage

• Cons
 – Require a special boot mechanism
 – Extensive ECC for NAND
 – Larger DRAM needed
 – Require more design time
 – Not energy efficient
Hybrid NAND Shadowing

• Pros
 – Much faster read and write speed
 – ECC embedded
 – Cost effective
 – NAND for both code and data storage

• Cons
 – Larger DRAM needed
 – Not energy efficient
NAND Demand Paging

• Pros
 – Less DRAM required
 – Low cost
 – Energy efficient
 – NAND for both code and data storage

• Cons
 – Require MMU-enabled CPU
 – Unpredictable read latency
 – Complex to design and test