Memory & Bus

Jin-Soo Kim (jinsookim@skku.edu)
Computer Systems Laboratory
Sungkyunkwan University
http://csl.skku.edu
Memory Architectures
Memory Components

- Several different types of memory
 - SRAM
 - DRAM
 - Flash
- Each type of memory comes in varying
 - Capacities
 - Widths
Random-Access Memory

▪ Dynamic RAM is dense, requires refresh
 • Synchronous DRAM is dominant type
 • SDRAM uses clock to improve performance, pipeline memory accesses

▪ Static RAM is faster, less dense, consumes more power
Read-Only Memory

- ROM may be programmed at factory
- Flash is dominant form of field-programmable ROM
 - Electrically erasable, must be block erased
 - Random access, but write/erase is much slower than read
 - NOR flash is more flexible
 - NAND flash is more dense
Requirements

Code

Mobile Consumer Electronics Networking

Data

Cards MP3 USB Drives

<table>
<thead>
<tr>
<th>Read</th>
<th>Writes</th>
<th>Density</th>
<th>Reliability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fast Random</td>
<td>Medium</td>
<td>Small – Medium</td>
<td>No bad bits</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Read</th>
<th>Writes</th>
<th>Density</th>
<th>Reliability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fast Sequential</td>
<td>Fast</td>
<td>Large</td>
<td>Bad bits allowed</td>
</tr>
</tbody>
</table>

Source: “Non-Volatile Memories”, Intel Corp.
NOR XIP

- **Pros**
 - Simple, easy to design
 - Execute-In-Place (XIP)
 - Predictable read latency
 - Code + Storage in NOR
 - Firmware upgrades

- **Cons**
 - Slow read speed
 - Much slower write speed
 - The high cost of NOR
NOR Shadowing

- **Pros**
 - Faster read and write
 - Easy boot-up
 - Use a relatively pricey NOR only to boot up the system
 - Code can be compressed

- **Cons**
 - Larger DRAM needed
 - Require more design time
 - Not energy efficient
NAND Shadowing

- **Pros**
 - Faster read and write
 - Cost effective
 - NAND for both code and data storage

- **Cons**
 - Require a special boot mechanism
 - Extensive ECC for NAND
 - Larger DRAM needed
 - Require more design time
 - Not energy efficient
Hybrid NAND Shadowing

▪ Pros
 • Much faster read and write speed
 • ECC embedded
 • Cost effective
 • NAND for both code and data storage

▪ Cons
 • Larger DRAM needed
 • Not energy efficient
NAND Demand Paging

▪ Pros
 • Less DRAM required
 • Low cost
 • Energy efficient
 • NAND for both code and data storage

▪ Cons
 • Require MMU-enabled CPU
 • Unpredictable read latency
 • Complex to design and test
The CPU Bus
The CPU Bus

- Bus allows CPU, memory, devices to communicate
 - Shared communication medium

- A bus is:
 - A set of wires
 - A communications protocol
Bus Protocols

- Bus protocol determines how devices communicate.
- Devices on the bus go through sequences of states.
 - Protocols are specified by state machines, one state machine per actor in the protocol
- May contain asynchronous logic behavior
Four-cycle Handshake

- Device 1 raise enq
- Device 2 responds with ack
- Device 2 lowers ack once it has finished
- Device 1 lowers enq
Microprocessor Busses

- Clock provides synchronization
- R/W is true when reading
- Address is \(a \)-bit bundle of address lines
- Data is \(n \)-bit bundle of data lines
- Data ready signals when \(n \)-bit data is ready
Bus Multiplexing

- CPU
- data enable
- device
 - data
 - adrs
- adrs enable
 - adrs
DMA

- Direct memory access (DMA) performs data transfers without executing instructions
 - CPU sets up transfer
 - DMA engine fetches, writes
- DMA controller is a separate unit
Bus Mastership

- By default, CPU is bus master and initiates transfers.
- DMA must become bus master to perform its work
 - CPU can’t use bus while DMA operates
- Bus mastership protocol:
 - Bus request
 - Bus grant
DMA Operation

- CPU sets DMA registers for start address, and length
- DMA status register controls the unit
- Once DMA is bus master, it transfers automatically
 - May run continuously until complete
 - May use every nth bus cycle
System Bus Configurations

- Multiple busses allow parallelism
 - Slow devices on one bus
 - Fast devices on separate bus
- A bridge connects two busses
ARM AMBA
(Advanced Microcontroller Bus Architecture)
AMBA Specification

- Advanced eXtensible Interface (AXI)
- Advanced High-performance Bus (AHB)
 - High-performance system bus
- Advanced System Bus (ASB)
- Advanced Peripheral Bus (APB)
 - Lower speed, lower cost
 - All devices are slaves
- Advanced Trace Bus (ATB)
Typical Architecture

- High-performance ARM processor
- High-bandwidth on-chip RAM
- DMA bus master
- UART
- Timer
- Keypad
- PIO
- AHB
- APB
- Bridge

High-bandwidth Memory Interface
AHB

- High performance
- Pipelined operation
- Burst transfers
- Split transactions
- Multiple bus masters
- Single cycle bus master handover
- Single clock edge operation
Simple Transfer
Transfer with Wait States

Diagram showing the timing phases of a transfer with wait states:
- **HCLK**: Clock signal
- **HADDR[31:0]**: Address phase
- **Control**: Control signals
- **HWDATA[31:0]**: Data phase
- **HREADY**: Ready signal
- **HRDATA[31:0]**: Data (A)
Burst Transfer
APB

- Low power
- Latched address and control
- Simple interface
- Suitable for many peripherals