
Jin-Soo Kim (jinsookim@skku.edu) 

Computer Systems Laboratory 

Sungkyunkwan University 

http://csl.skku.edu 

Scheduling 



Basic Scheduling 



ICE3028: Embedded Systems Design (Spring 2012) – Jin-Soo Kim (jinsookim@skku.edu) 3 

Non-preemptive Scheduling 

▪ The running task voluntarily yields the CPU 

▪ Force everybody to cooperate 

Thread ping () 
{ 
    while (1) { 
       printf (“ping\n”); 
       yield(); 
    } 
} 

Thread pong () 
{ 
    while (1) { 
       printf (“pong\n”); 
       yield(); 
    } 
} 



ICE3028: Embedded Systems Design (Spring 2012) – Jin-Soo Kim (jinsookim@skku.edu) 4 

Preemptive Scheduling 

▪ The scheduler can interrupt a task and 
force a context switch 

▪ Need to regain control of processor 
asynchronously  periodic timer interrupt 

▪ At each timer interrupt, the scheduler 
gains control and context switches as 
appropriate 

▪ Timer tick vs. quantum (or timeslice) 



ICE3028: Embedded Systems Design (Spring 2012) – Jin-Soo Kim (jinsookim@skku.edu) 5 

Comparison 
Preemptive: 
Always runs the highest 
available task.  

Cooperative  
(Non-preemptive): 
Context switches only 
occur if a task blocks, or 
explicitly relinquishes 
CPU control 



ICE3028: Embedded Systems Design (Spring 2012) – Jin-Soo Kim (jinsookim@skku.edu) 6 

Starvation 

▪ A situation where a task is prevented from 
making progress because another task has 
the resource it requires 

▪ A poor scheduling policy can cause 
starvation 

▪ Synchronization can also cause starvation 



ICE3028: Embedded Systems Design (Spring 2012) – Jin-Soo Kim (jinsookim@skku.edu) 7 

Priority Scheduling (1) 

▪ Choose task with highest priority to run 
next 

▪ Round-robin or FIFO within the same 
priority 

▪ Can be either preemptive or non-
preemptive 

▪ Priority is dynamically adjusted 

• Static priority vs. dynamic priority 



ICE3028: Embedded Systems Design (Spring 2012) – Jin-Soo Kim (jinsookim@skku.edu) 8 

Priority Scheduling (2) 

▪ Starvation problem 

• If there is an endless supply of high priority 
tasks, no low priority task will ever run 

 

▪ Aging 

• Increase priority as a function of wait time 

• Decrease priority as a function of CPU time 



ICE3028: Embedded Systems Design (Spring 2012) – Jin-Soo Kim (jinsookim@skku.edu) 9 

UNIX Schedulers 

▪ Priority-based 

• Static priority + dynamic priority 

▪ Preemptive 

▪ Time-shared 

▪ Aging 

▪ Priority boost for I/O-bound tasks 
 

▪ Priority vs. quantum? 



Real-Time Scheduling 



ICE3028: Embedded Systems Design (Spring 2012) – Jin-Soo Kim (jinsookim@skku.edu) 11 

Real-Time Systems 

▪ Perform a computation to conform to 
external timing constraints 

▪ Deadline frequency: periodic vs. aperiodic 

▪ Deadline type: 

• Hard: failure to meet deadline causes system 
failure 

• Soft: failure to meet deadline causes degraded 
response (best effort, statistical guarantees)  



ICE3028: Embedded Systems Design (Spring 2012) – Jin-Soo Kim (jinsookim@skku.edu) 12 

Periodic vs. Aperiodic Tasks 

▪ Periodic task: executes on (almost) every 
period 

▪ Aperiodic task: executes on demand 

▪ Analyzing aperiodic task sets is harder 

• Must consider worst-case combinations of task 
activations 



ICE3028: Embedded Systems Design (Spring 2012) – Jin-Soo Kim (jinsookim@skku.edu) 13 

Real-Time Workload 

▪ Job (unit of work) 

• A computation, a file read, a message 
transmission, etc. 

▪ Attributes 

• Resources required to make progress 

• Timing parameters 

Released  

Absolute 
deadline 

Relative deadline 

Execution time 



ICE3028: Embedded Systems Design (Spring 2012) – Jin-Soo Kim (jinsookim@skku.edu) 14 

Real-Time Task 

▪ Task: a sequence of similar jobs 

▪ Periodic task (p, e) 

• Its jobs repeat regularly 

• Period p = inter-release time (0 < p) 

• Execution time e = maximum execution time 
(0 < e < p) 

• Utilization U = e/p 

5 10 15 0 



ICE3028: Embedded Systems Design (Spring 2012) – Jin-Soo Kim (jinsookim@skku.edu) 15 

Real-Time Scheduling 

▪ Schedulability 

• Property indicating whether a real-time system 
(a set of real-time tasks) can meet their 
deadlines 

▪ Real-time scheduling 

• Determines the order of real-time task 
executions 

• Static-priority scheduling: RM 

• Dynamic-priority scheduling: EDF 



ICE3028: Embedded Systems Design (Spring 2012) – Jin-Soo Kim (jinsookim@skku.edu) 16 

Simple Feasibility Test 

▪ Assume: 

• No resource conflicts 

• Constant process  
execution times 

 

▪ Require: 

• T ≥ ∑i Ti 

• Can’t use more than 100% of the CPU 

T1 T2 T3 

T 



ICE3028: Embedded Systems Design (Spring 2012) – Jin-Soo Kim (jinsookim@skku.edu) 17 

RM 

▪ Rate Monotonic 

• Optimal static-priority scheduling 

• Assigns priority according to period 

• A task with a shorter period has a higher priority 

(4,1) 

(5,2) 

(7,2) 

5 10 15 

T1 

T2 

T3 



ICE3028: Embedded Systems Design (Spring 2012) – Jin-Soo Kim (jinsookim@skku.edu) 18 

RM 

▪ Rate Monotonic 

• Executes a job with the shortest period 

(4,1) 

(5,2) 

(7,2) 

5 10 15 

T1 

T2 

T3 



ICE3028: Embedded Systems Design (Spring 2012) – Jin-Soo Kim (jinsookim@skku.edu) 19 

RM 

▪ Rate Monotonic 

• Executes a job with the shortest period 

(4,1) 

(5,2) 

(7,2) 

Deadline Miss ! 

5 10 15 

T1 

T2 

T3 



ICE3028: Embedded Systems Design (Spring 2012) – Jin-Soo Kim (jinsookim@skku.edu) 20 

RM 

▪ Utilization bound 

• Real-time system is schedulable under RM if 

 

 

• Example: T1(4,1), T2(5,1), T3(10,1) 

 

 

 

     Thus, {T1, T2, T3} is schedulable under RM. 

 

 

  )12( /1 n

i nU

78.0)12(3

55.010/15/14/1

3/1 

 iU



ICE3028: Embedded Systems Design (Spring 2012) – Jin-Soo Kim (jinsookim@skku.edu) 21 

RM 

▪ Utilization bound (cont’d) 

0.5

0.6

0.7

0.8

0.9

1

1.1

1 4 16 64 256 1024 4096

U
ti

li
za

ti
o

n

The Number of Tasks

RM Utilization Bounds

  )12( /1 n

i nU

~ 69% 



ICE3028: Embedded Systems Design (Spring 2012) – Jin-Soo Kim (jinsookim@skku.edu) 22 

RM 

▪ As the number of tasks approaches infinity, 
the maximum utilization approaches 69% 

▪ RM cannot use 100% of CPU, even with 
zero context switch overhead 

▪ Must keep idle cycles available to handle 
worst-case scenario 

▪ However, RM guarantees all tasks will 
always meet their deadlines 



ICE3028: Embedded Systems Design (Spring 2012) – Jin-Soo Kim (jinsookim@skku.edu) 23 

EDF 

▪ Earliest Deadline First  

• Optimal dynamic priority scheduling 

• Task with a shorter deadline has higher priority 

• Executes a job with the earliest deadline 

(4,1) 

(5,2) 

(7,2) 

5 10 15 

T1 

T2 

T3 



ICE3028: Embedded Systems Design (Spring 2012) – Jin-Soo Kim (jinsookim@skku.edu) 24 

EDF 

▪ Earliest Deadline First  

• Executes a job with the earliest deadline 

(4,1) 

(5,2) 

(7,2) 

5 10 15 

T1 

T2 

T3 



ICE3028: Embedded Systems Design (Spring 2012) – Jin-Soo Kim (jinsookim@skku.edu) 25 

EDF 

▪ Earliest Deadline First  

• Executes a job with the earliest deadline 

(4,1) 

(5,2) 

(7,2) 

5 10 15 

T1 

T2 

T3 



ICE3028: Embedded Systems Design (Spring 2012) – Jin-Soo Kim (jinsookim@skku.edu) 26 

EDF 

▪ Earliest Deadline First  

• Executes a job with the earliest deadline 

(4,1) 

(5,2) 

(7,2) 

5 10 15 

T1 

T2 

T3 



ICE3028: Embedded Systems Design (Spring 2012) – Jin-Soo Kim (jinsookim@skku.edu) 27 

EDF 

▪ Optimal scheduling algorithm 

• If there is a schedule for a set of real-time tasks, 
EDF can schedule it 

(4,1) 

(5,2) 

(7,2) 

5 10 15 

T1 

T2 

T3 



ICE3028: Embedded Systems Design (Spring 2012) – Jin-Soo Kim (jinsookim@skku.edu) 28 

EDF 

▪ Utilization bound 

• Real-time system is schedulable under EDF if 
and only if 

 

 

 

(cf) Liu & Layland, “Scheduling algorithms for multi-
programming in a hard-real-time environment,” Journal 
of ACM, 1973. 

 1iU



ICE3028: Embedded Systems Design (Spring 2012) – Jin-Soo Kim (jinsookim@skku.edu) 29 

RM vs. EDF (1) 

▪ Rate Monotonic 

• Simpler implementation, even in systems 
without explicit support for timing constraints 

• Predictability for the highest priority tasks 

▪ EDF 

• Full processor utilization 

• Implementation complexity and runtime 
overhead due to dynamic priority management 

• Misbehavior during overload conditions 



ICE3028: Embedded Systems Design (Spring 2012) – Jin-Soo Kim (jinsookim@skku.edu) 30 

RM vs. EDF (2) 

▪ Assumptions 

• All tasks are periodic and fully preemptible 

• All tasks are released at the beginning of period 
and have a deadline equal to their period 

• All tasks are independent 

• All tasks have a fixed computation time 

• No task may voluntarily suspend itself 

• All overheads are assumed to be 0 

• There is just one processor 


