ARM Processor

Jin-Soo Kim (jinsookim@skku.edu)
Computer Systems Laboratory
Sungkyunkwan University
http://csl.skku.edu
CPU Architecture
CPU & Memory

Memory

ADD r5, r1, r3

200

CPU

PC

address

data
von Neumann Architecture

- Separate CPU and memory
 - Memory holds data and instructions.
 - CPU fetches instructions from memory.
 - CPU manipulates data by performing arithmetic and logical operations

- CPU registers help out
 - Program Counter (PC)
 - Instruction Register (IR)
 - General-Purpose Registers (GPRs), etc.
Harvard Architecture

Data memory

Program memory

address

data

address

instructions

CPU

PC
von Neumann vs. Harvard

- Harvard can’t use self-modifying code.
- Harvard allows two simultaneous memory fetches.
- Most DSPs use Harvard architecture for streaming data:
 - Greater memory bandwidth
 - More predictable bandwidth
RISC vs. CISC

- Complex Instruction Set Computer (CISC)
 - Many addressing modes
 - Many complex operations
 - Different instruction formats of varying lengths

- Reduced Instruction Set Computer (RISC)
 - Load/store
 - Pipelinable instructions
Instruction Set Architecture

- Supported operations
- Number of operands
- Types of operands
- Addressing modes
- Fixed vs. variable length
- Registers visible to the programmer

 ...
Multiple Implementations

- Successful architectures have several implementations:
 - Varying clock speeds
 - Different bus widths
 - Different cache sizes
 - ...
Assembly Language

- Textual description of instructions
- One instruction per line

```
LDR  r0, [r8]  
ADD  r4, r0, r1 
CMP  r4, r5    ; Compare r4 < r5
BGE  label1    
```

Labels provide names for addresses

Comment

- Pseudo-ops
 - Define current address, reserve storage, constants, ...
Introduction to the ARM Architecture
Overview (1)

- **Advanced RISC Machine**
- The most widely used 32-bit ISA
 - 98% of the more than 1 billion mobile phones sold used at least one ARM processor (2005)
 - 4 billion shipped in 2008
 - 90% of all embedded 32-bit RISC processors (2009)
- ARM architecture has been extended over several versions.
Overview (2)

- ARM processors developed by licensees
 - DEC StrongARM
 - Marvell (formerly Intel) Xscale
 - Nintendo
 - Nvidia Tegra
 - Qualcomm Snapdragon
 - TI OMAP
 - Samsung Hummingbird/Exynos
 - Apple A4/A5/A5X
ARM Design Goals

- High performance
- Small code size
- Low power consumption
- Small silicon area
Application Processors

- iPhone 3GS (600MHz)
- iPhone 4 (clock speed not disclosed, 800MHz?)
- iPad (1GHz)
- Samsung Galaxy S (1GHz)
- Samsung Galaxy Tab 7” (1GHz)
- iPhone 4S (dual-core, 800MHz)
- iPad 2 (dual-core, 1GHz)
- New iPad (dual-core, 1GHz)
- Galaxy S2 (dual-core, 1.2GHz)
- Galaxy S3 (quad-core, 1.4GHz)
Embedded Processors

Classic
ARM Processors

Embedded
Cortex Processors

ARM1156T2(F)-S

ARM968-S

ARM946-S

ARM7TDI-S

ARM7EJ-S

Cortex-M0

Cortex-M1

Cortex-M3

Cortex-M4

Cortex-R4

Cortex-R5

Cortex-R7

Performance, Functionality

Capability
Processors Lineup

Classic
ARM Processors

Application
Cortex Processors

Embedded
Cortex Processors

ARMv4T
ARMv5TJ
ARMv6
ARMv7A/R

ARM32-Bit ISA

Thumb 16-Bit ISA

Thumb-2 Mixed ISA

VFPv2
Jazelle
TrustZone
SIMD
NEON
Virtualization

ARM7TDMI

ARM926
ARM11MP
Cortex-A5
Cortex-A15
Cortex-A9
Cortex-A8

ARM968
ARM1136J

ARM946
ARM1156T2

ARM946
ARM1156T2

Cortex-R7
Cortex-R5
Cortex-R4

SC300
SC000

ARMv7M/ME
ARMv6M

Thumb
Thumb

Thumb-2
Thumb-2

NVIC
NVIC

WIC
WIC

ICE3028: Embedded Systems Design (Spring 2012) – Jin-Soo Kim (jinsookim@skku.edu)
ARM 7TDMI-S

- Implements the ARMv4T architecture
- Applications
 - iPod from Apple
 - Nintendo DS & Game Boy Advance
 - Most of Nokia’s mobile phones
 - Lego Mindstorms NXT
 - iriver portable digital audio players
 - Roomba 500 series from iRobot
ARM Architecture (1)

- RISC architecture
 - A large uniform register file
 - A load/store architecture
 - Simple addressing modes
 - Uniform and fixed-length instruction fields
ARM Architecture (2)

- Other features
 - Arithmetic/logical operations combined with a shift
 - Conditional execution of almost all instructions
 - Auto-increment (-decrement) addressing modes
 - Load and Store Multiple instructions
ARM Registers

- 16 user-visible 32-bit registers: r0-r15
 - r13: Stack Pointer (SP)
 - r14: Link Register (LR)
 - r15: Program Counter (PC)
- Current Program Status Register (CPSR)
ARM Status Bits

- Every arithmetic, logical, or shifting operation sets CPSR bits:
 - N (Negative), Z (Zero), C (Carry), V (Overflow)
 - Condition codes updated when S bit = 1

- Example:
 - \(0xffffffff + 0x1 = 0x0\) ; NZCV = 0110
 - \(0x7fffffff + 0x1 = 0x80000000\) ; NZCV = 1001
 - \(0x0 - 0x1 = 0xffffffff\) ; NZCV = 1000
Memory Model

▪ A linear collection of (up to 2^{32}) bytes
▪ Supports both big-endian & little-endian
 • Controlled by the CFGBIGEND signal (ARM7)
 • CFGBIGEND == 0: Little-endian (default)
 • CFGBIGEND == 1: Big-endian
▪ Data types
 • word (32-bit): aligned to 4-byte boundary
 • halfword (16-bit): aligned to 2-byte boundary
 • byte (8-bit)
ARM Instructions

- Basic format
 - Two sources, one destination
 - All arithmetic operations have this form
 \[
 \text{ADD } r0, r1, r2 \quad ; \quad r0 = r1 + r2
 \]

- Operand types
 - Register (r0~r15):
 \[
 \text{ADD } r0, r1, r2
 \]
 - Immediate:
 \[
 \text{ADD } r0, r1, \#4
 \]
 - Memory:
 \[
 \text{LDR } r5, [r3, \#32]
 \]
Thumb Instruction Sets (1)

- 16-bit instruction set
- A subset of the most commonly used 32-bit ARM instructions
- Significantly improved code density at a cost of some reduction in performance
 - Typically 65% of the ARM code size
 - 160% performance of the ARM code when running from a 16-bit memory system
Thumb Instruction Set (2)

- Transparently decompressed to full 32-bit ARM instructions in real time, without performance loss
- A processor executing Thumb instructions can change to ARM instructions for performance critical segments
- #pragma thumb
 gcc -mthumb
 gcc -mthumb-interwork
Thumb Registers

- r8 – r12 registers are not visible
- MOV, CMP, and ADD instructions can access high registers