Introduction to Embedded Systems

Jin-Soo Kim (jinsookim@skku.edu)
Computer Systems Laboratory
Sungkyunkwan University
http://csl.skku.edu
Embedded Systems Everywhere
What are Embedded Systems?
Definition

- Embedded System (ES): any device that includes a programmable computer but is not itself a general-purpose computer.

- Take advantage of application characteristics to optimize the design
Embedding a Computer

CPU

input

output

analog

analog

mem

embedded computer
Where are the CPUs?

- Estimated 98% of 8 billion CPUs produced in 2000 used for embedded applications
- Smartphone shipments (101M) surpass PCs (2010Q4)

Source: DARPA/Intel (Tennenhouse)
Embedded Processors

- **Microcontroller (μC or MCU)**
 - A small computer on a single IC containing a processor core, memory, and I/O peripherals

- **Microprocessor**
 - A general-purpose CPU in a single chip

- **SoC (System-on-a-Chip)**
 - More integration than MCU
 - Mostly, require external memory
Early History (1)

- MIT Whirlwind computer (Late 1940’s)
 - Originally designed to control a flight simulator for training bomber crews
 - The first computer that operated in real time
 - 5000 vacuum tubes
Early History (2)

- **Intel 4004 (1971)**
 - The first microprocessor (4-bit)
 - Originally designed for use in a calculator
 - The first complete CPU on one chip
 - The first commercially available microprocessor
 - 2300 transistors @ 108KHz
Early History (3)

- Automobiles used microprocessor-based engine controllers starting in 1970’s
 - Control fuel/air mixture, engine timing, etc.
 - Multiple modes of operation: warm-up, cruise, hill climbing, etc.
 - Provides lower emissions, better fuel efficiency
Keyboard
Mouse
Hard Disk Drive

Motor Driver

Flash-ROM

Controller

Buffer (RAM)
Digital Still Camera

Canon EOS3 uses three microprocessors for auto-focus, etc.
iPhone 3G

Semiconductor insights™

- **SST**: SST25VF080B
 - 1 MB Serial Flash

- **Samsung**: LIS331 DL
 - Accelerometer

- **ST Microelectronics**: SMP3i
 - SMARTi Power Management IC

- **Skyworks**: SKY77340
 - Power Amp. Module

- **Infineon**: UMTS Transceiver

- **TriQuint**: TQM666032
 - WCDMA/HSUPA Power Amp.

- **TriQuint**: TQM676031
 - WCDMA/HSUPA Power Amp.

- **TriQuint**: TQM616035
 - WCDMA/HSUPA Power Amp.

- **Wolfson**: WM6180C
 - Audio Codec

- **Infineon**: PMB2525
 - Hammerhead II GPS

- **Linear Technology**: LTC4088-2
 - Battery Charger/USB Controller

- **NXP**: Power Management

- **Infineon**: Digital Baseband Processor

Notes: iPhone 3G uses a variety of semiconductor components from different manufacturers to create its integrated circuit.
Digital TV

Programmable CPUs + hardwired logic for video/audio decode, etc.
Automobile

- A high-end automobile
 - > 100 microprocessors
 - 4-bit microcontroller checks seat belt
 - Microcontrollers run dashboard devices
 - 16/32-bit microprocessor controls engine
Want More?

- You name it!

- Anti-lock brakes
- Auto-focus cameras
- Automatic teller machines
- Automatic toll systems
- Automatic transmission
- Avionic systems
- Battery chargers
- Camcorders
- Cell phones
- Cell-phone base stations
- Cordless phones
- Cruise control
- Curbside check-in systems
- Digital cameras
- Disk drives
- Electronic card readers
- Electronic instruments
- Electronic toys/games
- Factory control
- Fax machines
- Fingerprint identifiers
- Home security systems
- Life-support systems
- Medical testing systems

- Modems
- MPEG decoders
- Network cards
- Network switches/routers
- On-board navigation
- Pagers
- Photocopiers
- Point-of-sale systems
- Portable video games
- Printers
- Satellite phones
- Scanners
- Smart ovens/dishwashers
- Speech recognizers
- Stereo systems
- Teleconferencing systems
- Televisions
- Temperature controllers
- Theft tracking systems
- TV set-top boxes
- VCR’s, DVD players
- Video game consoles
- Video phones
- Washers and dryers

And the list goes on and on ...
Solid State Drives (SSDs)
HDDs vs. SSDs

2.5” HDD Flash SSD
(101x70x9.3mm)

1.8” HDD Flash SSD
(78.5x54x4.15mm)
SSD Architecture
Commercial SSDs

From enuri.com (As of March 5, 2013)

<table>
<thead>
<tr>
<th>Brand</th>
<th>Model</th>
<th>Interface</th>
<th>Capacity</th>
<th>Sequential Read (MB/s)</th>
<th>Sequential Write (MB/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sandisk</td>
<td>Extreme SSD Pro</td>
<td>Sata III</td>
<td>256 GB</td>
<td>520</td>
<td>390</td>
</tr>
<tr>
<td></td>
<td>840 Series Pro</td>
<td>Sata III</td>
<td>240 GB</td>
<td>550</td>
<td>510</td>
</tr>
<tr>
<td></td>
<td>510 Series Pro</td>
<td>Sata III</td>
<td>120 GB</td>
<td>540</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td>460 Series Pro</td>
<td>Sata III</td>
<td>960 GB</td>
<td>540</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td>550 Series Pro</td>
<td>Sata III</td>
<td>960 GB</td>
<td>540</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td>530 Series Pro</td>
<td>Sata III</td>
<td>480 GB</td>
<td>530</td>
<td>490</td>
</tr>
</tbody>
</table>

Technical Specifications
- **Interface**: Sata III
- **Dimensions**: 2.5" x 88.9 x 9.5 mm
- **Form Factor**: 2.5" x 88.9 x 9.5 mm

From enuri.com (As of March 5, 2013)
1$-per-GB?

News

SSD Per-GB Cost to Fall Below $1 in Second Half of 2012 - Market Observers.

SSDs to Gain Considerable Market Share This Year, Says DRAMeXchange

[03/07/2012 08:53 PM] by Anton Shilov

The $1-per-GB price has been for a long time considered as a holy grail for solid-state drives as it is widely believed that at such price points SSDs will start to be adopted by mainstream users.

According to DRAMeXchange, a division of TrendForce market research firm, the price per GB will be even lower than $1 in the second half of the year, which will unleash growth potential for SSDs.

After SSDs based on NAND flash memory manufactured using the latest - 19nm, 20nm and similar - process technologies enter mass production in the second half of 2012, unit cost may fall below $1-per-GB, the pricing sweet spot the market has been anticipating. When this occurs, DRAMeXchange expects ultrabook/thin notebook makers will transition from adopting hybrid HDD solutions to pure SSD solutions, and mainstream capacity will increase to 128GB.

Challenges
ES Characteristics (1)

▪ Single-functioned
 • Executes a single program, repeatedly

▪ Sophisticated functionality
 • Often have to run sophisticated algorithms or multiple algorithms
 - Cell phone, laser printer
 • Often provide sophisticated user interfaces
ES Characteristics (2)

- Reactive and real-time operation: Must finish operations by deadlines
 - Continually reacts to changes in the systems environment
 - Hard real-time: missing deadline causes failure
 - Soft real-time: missing deadline results in degraded performance
- Many systems are multi-rate: Must handle operations at widely varying rate
ES Characteristics (3)

- Low cost
 - Manufacturing cost
 - The monetary cost of manufacturing each copy
 - NRE (Non-Recurring Engineering) cost
 - The one-time monetary cost of designing the system
 - Many embedded systems are mass-market items that must have low manufacturing cost
 - Limited memory, microprocessor power, etc.
ES Characteristics (4)

- **Low power**
 - Power consumption is critical in battery-powered devices
 - Excessive power consumption increases system cost even in wall-powered devices
ES Characteristics (5)

- Designed to tight deadlines by small teams
 - Often designed by a small team of designers
 - Often must meet tight deadlines
 - 6-month time-to-market is common
 - Can’t miss back-to-school window for calculator
 - Many design alternatives
 - Hard to develop and debug
Challenges in ES Design (1)

- How much hardware do we need?
 - Powerful CPU? Big memory?
- How do we meet our deadlines?
 - Faster hardware or cleverer software?
- How do we minimize power?
 - Turn off unnecessary logic? Reduce memory accesses?
- Time-to-market?
Challenges in ES Design (2)

- Does it really work?
 - Is the specification correct?
 - Does the implementation meet the spec?
 - How do we test for real-time characteristics?
 - How do we test on real data?
 - Does it work reliably?

- How do we work on the system?
 - Observability, controllability?
 - What is our development platform?
Challenges in ES Design (3)

- Optimizing design metrics
 - Improving one may worsen others
 - Expertise with both software and hardware is needed to optimize design metrics
 - A designer must be comfortable with various technologies in order to choose the best for a given application and constraints