Memory & Bus

Jin-Soo Kim (jinsookim@skku.edu)
Computer Systems Laboratory
Sungkyunkwan University
http://csl.skku.edu
Memory Architectures
Memory Components

- Several different types of memory
 - SRAM
 - DRAM
 - Flash

- Each type of memory comes in varying
 - Capacities
 - Widths
Random-Access Memory

- Dynamic RAM is dense, requires refresh
 - Synchronous DRAM is dominant type
 - SDRAM uses clock to improve performance, pipeline memory accesses

- Static RAM is faster, less dense, consumes more power
Read-Only Memory

- ROM may be programmed at factory
- Flash is dominant form of field-programmable ROM
 - Electrically erasable, must be block erased
 - Random access, but write/erase is much slower than read
 - NOR flash is more flexible
 - NAND flash is more dense
Requirements

Code

<table>
<thead>
<tr>
<th>Mobile</th>
<th>Consumer Electronics</th>
<th>Networking</th>
</tr>
</thead>
</table>

Data

<table>
<thead>
<tr>
<th>Cards</th>
<th>MP3</th>
<th>USB Drives</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Read</th>
<th>Writes</th>
<th>Density</th>
<th>Reliability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fast Random</td>
<td>Medium</td>
<td>Small – Medium</td>
<td>No bad bits</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Read</th>
<th>Writes</th>
<th>Density</th>
<th>Reliability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fast Sequential</td>
<td>Fast</td>
<td>Large</td>
<td>Bad bits allowed</td>
</tr>
</tbody>
</table>

Source: “Non-Volatile Memories”, Intel Corp.
NOR XIP

- **Pros**
 - Simple, easy to design
 - Execute-In-Place (XIP)
 - Predictable read latency
 - Code + Storage in NOR
 - Firmware upgrades

- **Cons**
 - Slow read speed
 - Much slower write speed
 - The high cost of NOR
NOR Shadowing

Pros
- Faster read and write
- Easy boot-up
- Use a relatively pricey NOR only to boot up the system
- Code can be compressed

Cons
- Larger DRAM needed
- Require more design time
- Not energy efficient
NAND Shadowing

- **Pros**
 - Faster read and write
 - Cost effective
 - NAND for both code and data storage

- **Cons**
 - Require a special boot mechanism
 - Extensive ECC for NAND
 - Larger DRAM needed
 - Require more design time
 - Not energy efficient
Hybrid NAND Shadowing

- **Pros**
 - Much faster read and write speed
 - ECC embedded
 - Cost effective
 - NAND for both code and data storage

- **Cons**
 - Larger DRAM needed
 - Not energy efficient
NAND Demand Paging

Pros
- Less DRAM required
- Low cost
- Energy efficient
- NAND for both code and data storage

Cons
- Require MMU-enabled CPU
- Unpredictable read latency
- Complex to design and test
The CPU Bus
The CPU Bus

- Bus allows CPU, memory, devices to communicate
 - Shared communication medium

- A bus is:
 - A set of wires
 - A communications protocol
Bus Protocols

- Bus protocol determines how devices communicate.
- Devices on the bus go through sequences of states.
 - Protocols are specified by state machines, one state machine per actor in the protocol
- May contain asynchronous logic behavior
Four-cycle Handshake

- Device 1 raise enq
- Device 2 responds with ack
- Device 2 lowers ack once it has finished
- Device 1 lowers enq
Microprocessor Busses

- Clock provides synchronization
- R/W is true when reading
- Address is \(a \)-bit bundle of address lines
- Data is \(n \)-bit bundle of data lines
- Data ready signals when \(n \)-bit data is ready
Bus Multiplexing

- CPU
- device
- data
- adrs
- adrs enable
- data enable
DMA

- Direct memory access (DMA) performs data transfers without executing instructions
 - CPU sets up transfer
 - DMA engine fetches, writes
- DMA controller is a separate unit
Bus Mastership

- By default, CPU is bus master and initiates transfers.
- DMA must become bus master to perform its work
 - CPU can’t use bus while DMA operates
- Bus mastership protocol:
 - Bus request
 - Bus grant
DMA Operation

- CPU sets DMA registers for start address, and length
- DMA status register controls the unit
- Once DMA is bus master, it transfers automatically
 - May run continuously until complete
 - May use every n^{th} bus cycle
System Bus Configurations

- Multiple busses allow parallelism
 - Slow devices on one bus
 - Fast devices on separate bus
- A bridge connects two busses
ARM AMBA
(Advanced Microcontroller Bus Architecture)
AMBA Specification

- **Advanced System Bus (ASB)**
- **Advanced High-performance Bus (AHB)**
 - High-performance system bus
- **Advanced eXtensible Interface (AXI)**
- **Advanced Peripheral Bus (APB)**
 - Lower speed, lower cost
 - All devices are slaves
- **Advanced Trace Bus (ATB)**
Typical Architecture

- High-performance ARM processor
- High-bandwidth on-chip RAM
- DMA bus master
- UART
- Timer
- Keypad
- PIO
- AHB
- Bridge
- APB

High-bandwidth Memory Interface
AHB

- High performance
- Pipelined operation
- Burst transfers
- Split transactions
- Multiple bus masters
- Single-cycle bus master handover
- Single-clock edge operation
Simple Transfer

![Diagram showing simple transfer with HCLK, HADDR[31:0], Control, HWDATA[31:0], HREADY, and HRDATA[31:0] signals with address phase and data phase.]
Transfer with Wait States

Address phase

Data phase

HCLK

HADDR[31:0]

Control

HWDATA[31:0]

HREADY

HRDATA[31:0]
Burst Transfer

<table>
<thead>
<tr>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>T5</th>
<th>T6</th>
<th>T7</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCLK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HTRANS[1:0]</td>
<td>NONSEQ</td>
<td>SEQ</td>
<td>SEQ</td>
<td>SEQ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HADDR[31:0]</td>
<td>0x38</td>
<td>0xC</td>
<td>0x40</td>
<td>0x44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HBURST[2:0]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>INC4</td>
<td></td>
</tr>
<tr>
<td>HWRITE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Control for burst</td>
<td></td>
</tr>
<tr>
<td>HSIZE[2:0]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SIZE = Word</td>
<td></td>
</tr>
<tr>
<td>HPROT[3:0]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HWDATA[31:0]</td>
<td></td>
<td>Data (0x38)</td>
<td>Data (0x3C)</td>
<td>Data (0x40)</td>
<td>Data (0x44)</td>
<td></td>
</tr>
<tr>
<td>HREADY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HRDATA[31:0]</td>
<td></td>
<td>Data (0x38)</td>
<td>Data (0x3C)</td>
<td>Data (0x40)</td>
<td>Data (0x44)</td>
<td></td>
</tr>
</tbody>
</table>
APB

- Low power
- Latched address and control
- Simple interface
- Suitable for many peripherals