Introduction to Embedded Systems

Jin-Soo Kim (jinsookim@skku.edu)
Computer Systems Laboratory
Sungkyunkwan University
http://csl.skku.edu
Embedded Systems Everywhere
What are Embedded Systems?
Definition

- **Embedded System (ES):** any device that includes a programmable computer but is not itself a general-purpose computer.

 - Take advantage of application characteristics to optimize the design
Embedding a Computer

- CPU
- input
- mem
- output
- analog
- embedded computer
Where are the CPUs?

- Estimated 98% of 8 billion CPUs produced in 2000 used for embedded applications
- Smartphone shipments (101M) surpass PCs (2010Q4)

Source: DARPA/Intel (Tennenhouse)
Embedded Processors

- **Microcontroller (μC or MCU)**
 - A small computer on a single IC containing a processor core, memory, and I/O peripherals

- **Microprocessor**
 - A general-purpose CPU in a single chip

- **SoC (System-on-a-Chip)**
 - More integration than MCU
 - Mostly, require external memory
Early History (1)

- MIT Whirlwind computer (Late 1940’s)
 - Originally designed to control a flight simulator for training bomber crews
 - The first computer that operated in real time
 - 5000 vacuum tubes
Early History (2)

- Intel 4004 (1971)
 - The first microprocessor (4-bit)
 - Originally designed for use in a calculator
 - The first complete CPU on one chip
 - The first commercially available microprocessor
 - 2300 transistors @ 108KHz
Early History (3)

- Automobiles used microprocessor-based engine controllers starting in 1970’s
 - Control fuel/air mixture, engine timing, etc.
 - Multiple modes of operation: warm-up, cruise, hill climbing, etc.
 - Provides lower emissions, better fuel efficiency
Keyboard
Mouse
Hard Disk Drive
Digital Still Camera

Canon EOS3 uses three microprocessors for auto-focus, etc. (1998)
iPhone 5S

- Apple M7 Co-processor
- Apple A7 Application Processor & 1GB LPDDR3 DRAM
- Qualcomm MDM9615M LTE Modem
- Qualcomm WTR1605L LTE/HSPA+/CDMA2K/TDSCDMA/EDGE/GPS Transceiver
- Apple 338S1216 Power Management IC
- SK Hynix 16GB NAND Flash
- Qualcomm PM8018 RF Power Management IC
- Broadcom BCM5976 Touchscreen Controller
- TI 343S0645 Touchscreen Interface
- TriQuint TQM6M6224 Dual-band PA duplexer

Apple A7 Application Processor & 1GB LPDDR3 DRAM

Qualcomm MDM9615M LTE Modem

TriQuint TQM6M6224 Dual-band PA duplexer
Digital TV

Programmable CPUs + hardwired logic for video/audio decode, etc.
Automobile

- A high-end automobile
 - > 100 microprocessors
 - 4-bit microcontroller checks seat belt
 - Microcontrollers run dashboard devices
 - 16/32-bit microprocessor controls engine
Fitbit Flex

STMicroelectronics 32L151C6
Ultra Low Power ARM Cortex M3
Microcontroller

Charger IC: TI BQ24040

Accelerometer IC?

Nordic Semiconductor nRF8001
Bluetooth Low Energy IC

Source: https://www.ifixit.com/Teardown/Fitbit+Flex+Teardown/16050
DJI Phantom 2 Drone

Phantom 2 Vision Plus
- Maximum flight speed: 33.5 m.p.h.
- Maximum ascent speed: 13.4 m.p.h.
- Body width: 11.4 in.
- Weight: 2.7 lbs.

PROPELLERS
To stabilize motion, two propellers spin clockwise (black hub), and two spin counterclockwise (gray).

GPS RECEIVER
On the underside of the shell, it determines the position and height of the quadcopter.

FLIGHT CONTROLLER
Acts as the brains of the Phantom when it is in the air. Contains a gyroscope and an accelerometer.

COMPASS (not shown)
Gathers geomagnetic information that helps the GPS calculate the drone's position and height.

LANDING GEAR

3-AXIS GIMBAL

CAMERA

VIDEO TRANSMITTER
Sends an HD video signal to the remote control and app.

PROPELLER MOTOR

ELECTRONIC SPEED CONTROLLER
One for each motor. Controls the speed and direction of how the propeller spins. Also controls the onboard LED lights.

Solid State Drive (SSD)
Want More?

- **You name it!**

<table>
<thead>
<tr>
<th>Category</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-lock brakes</td>
<td>Modems</td>
</tr>
<tr>
<td>Auto-focus cameras</td>
<td>MPEG decoders</td>
</tr>
<tr>
<td>Automatic teller machines</td>
<td>Network cards</td>
</tr>
<tr>
<td>Automatic toll systems</td>
<td>Network switches/routers</td>
</tr>
<tr>
<td>Automatic transmission</td>
<td>On-board navigation</td>
</tr>
<tr>
<td>Avionic systems</td>
<td>Pagers</td>
</tr>
<tr>
<td>Battery chargers</td>
<td>Photocopiers</td>
</tr>
<tr>
<td>Camcorders</td>
<td>Point-of-sale systems</td>
</tr>
<tr>
<td>Cell phones</td>
<td>Portable video games</td>
</tr>
<tr>
<td>Cell-phone base stations</td>
<td>Printers</td>
</tr>
<tr>
<td>Cordless phones</td>
<td>Satellite phones</td>
</tr>
<tr>
<td>Cruise control</td>
<td>Scanners</td>
</tr>
<tr>
<td>Curbside check-in systems</td>
<td>Smart ovens/dishwashers</td>
</tr>
<tr>
<td>Digital cameras</td>
<td>Speech recognizers</td>
</tr>
<tr>
<td>Disk drives</td>
<td>Stereo systems</td>
</tr>
<tr>
<td>Electronic card readers</td>
<td>Teleconferencing systems</td>
</tr>
<tr>
<td>Electronic instruments</td>
<td>Televisions</td>
</tr>
<tr>
<td>Electronic toys/games</td>
<td>Temperature controllers</td>
</tr>
<tr>
<td>Factory control</td>
<td>Theft tracking systems</td>
</tr>
<tr>
<td>Fax machines</td>
<td>TV set-top boxes</td>
</tr>
<tr>
<td>Fingerprint identifiers</td>
<td>VCR’s, DVD players</td>
</tr>
<tr>
<td>Home security systems</td>
<td>Video game consoles</td>
</tr>
<tr>
<td>Life-support systems</td>
<td>Video phones</td>
</tr>
<tr>
<td>Medical testing systems</td>
<td>Washers and dryers</td>
</tr>
</tbody>
</table>

And the list goes on and on …
Challenges
ES Characteristics (1)

- Single-functioned
 - Executes a single program, repeatedly

- Sophisticated functionality
 - Often have to run sophisticated algorithms or multiple algorithms
 - Cell phone, laser printer, digital TV, etc.
 - Often provide sophisticated user interfaces
ES Characteristics (2)

- Reactive and real-time operation:
 Must finish operations by deadlines
 - Continually reacts to changes in the systems environment
 - **Hard real-time**: missing deadline causes failure
 - **Soft real-time**: missing deadline results in degraded performance
 - Many systems are multi-rate:
 Must handle operations at widely varying rate
ES Characteristics (3)

- Low cost
 - Manufacturing cost
 - The monetary cost of manufacturing each copy
 - NRE (Non-Recurring Engineering) cost
 - The one-time monetary cost of designing the system
 - Many embedded systems are mass-market items that must have low manufacturing cost
 - Limited memory, microprocessor power, etc.
ES Characteristics (4)

- **Low power**
 - Power consumption is critical in battery-powered devices
 - Excessive power consumption increases system cost even in wall-powered devices
ES Characteristics (5)

- Designed to tight deadlines by small teams
 - Often designed by a small team of designers
 - Often must meet tight deadlines
 - 6-month time-to-market is common
 - Can’t miss back-to-school window for calculator
 - Many design alternatives
 - Hard to develop and debug
Challenges in ES Design (I)

▪ How much hardware do we need?
 • Powerful CPU? Big memory?

▪ How do we meet our deadlines?
 • Faster hardware or cleverer software?

▪ How do we minimize power?
 • Turn off unnecessary logic? Reduce memory accesses?

▪ How do we design for upgradeability?
 • e.g. Evolution Kit in Samsung Digital TVs

▪ Time-to-market?
Challenges in ES Design (2)

▪ Does it really work?
 • Is the specification correct?
 • Does the implementation meet the spec?
 • How do we test for real-time characteristics?
 • How do we test on real data?
 • Does it work reliably?

▪ How do we work on the system?
 • Limited observability and controllability
 • Restricted development environments
Challenges in ES Design (3)

- Optimizing design metrics
 - Improving one may worsen others
 - Expertise with both software and hardware is needed to optimize design metrics
 - A designer must be comfortable with various technologies in order to choose the best for a given application and constraints