Flash Translation
Layers |

Jin-Soo Kim (jinsookim@skku.edu)
Computer Systems Laboratory
Sungkyunkwan University
http://csl.skku.edu

Storage Abstraction

= Abstraction given by block device drivers:

0 1 N-1

= Operations
* ldentify(): returns N
* Read (start sector #, # of sectors)
* Write (start sector #, # of sectors, data)

Source: Sang Lyul Min (Seoul National University)
ICE3028: Embedded Systems Design | Spring 2016 | Jin-Soo Kim (jinsookim @skku.edu) 2

What is FTL!?

= A software layer to make NAND flash fully emulate
traditional block devices (or disks)

P P

Read Sectors Write Sectors Read Sectors Write Sectors
Read Sectors Write Sectors
O O
Read Write Erase FTL

o 0 G L

Source: Zeen Info. Tech.
ICE3028: Embedded Systems Design | Spring 2016 | Jin-Soo Kim (jinsookim @skku.edu) 3

Major Components in SSD

= Similar in most NAND storage systems

1. Host
Interface

3. NAND
Array

SATA,
PCle,
UFS,

eMMC,
etc.

Data Storage

2. Storage
Controller

Running FTL

ICE3028: Embedded Systems Design | Spring 2016 | Jin-Soo Kim (jinsookim @skku.edu)

Flash Cards Internals

San)isk 2

1.068

CompactFlash®

Transcend A

B MultiMediaCard

MMC
I/F

SPApAnbiansnnssnsansd »
N

Flash
Ctrl

()
i 2
:

RS
Enc/Dec

ROM

RAM1 2
I A
+ |Reset CLK
Memory GEN1.2|| GEN
> | Controller i i
Power
€| Decoder Manage |
=
Interrupt N
> Controller
w
w .
<«—| APB Bridge Timer >
I AMBA APB

ICE3028: Embedded Systems Design | Spring 2016 | Jin-Soo Kim (jinsookim @skku.edu)

http://images.google.com/imgres?imgurl=http://shop.brando.com.hk/image/sandisk1gbcf.jpg&imgrefurl=http://shop.brando.com.hk/sandisk1gbcf.php&h=600&w=800&sz=150&tbnid=cymPV8lt5UPTUM:&tbnh=106&tbnw=142&hl=ko&start=2&prev=/images?q=CompactFlash&svnum=10&hl=ko&lr=&rls=GGLG,GGLG:2006-02,GGLG:ko&sa=N
http://images.google.com/imgres?imgurl=http://shop.brando.com.hk/image/sandisk1gbcf.jpg&imgrefurl=http://shop.brando.com.hk/sandisk1gbcf.php&h=600&w=800&sz=150&tbnid=cymPV8lt5UPTUM:&tbnh=106&tbnw=142&hl=ko&start=2&prev=/images?q=CompactFlash&svnum=10&hl=ko&lr=&rls=GGLG,GGLG:2006-02,GGLG:ko&sa=N

FTL Architecture
e
= Sector Translation Layer

* Address mapping i

+ Garbage collection
* Wear leveling x

Block Layer
* Bad block management Block Device Driver ‘

* Error handling

= Block Management Layer

= Low Level Driver

* Flash interface Conttel

-~---

FTL (Flash Translation Layer)

Flash Translation Layer ‘

_ 4 g
4
V4

ICE3028: Embedded Systems Design | Spring 2016 | Jin-Soo Kim (jinsookim@skku.edu)

Host

Basic Firmware Architecture

J

AR

Address Translation
Bad Block Management “ ECC

I | Wear Leveling I NAND
| | Garbage Collection I
I Buffer Manager | I I |
Host Interface er FlashAranslation Layer Flash Interface Layer
DRAM
SRAM DRAM
Write Cache 4
. . . Non Performance Critical F/W
Performance Critical F/W Logical to Physical
Mapping Table Metadata
Metadata Queues Statistics

S. H. Noh and Y.-S. Kee, Flash Memory and Its By-product: A to Z in a Flash, FAST Tutorial, 2015.

ICE3028: Embedded Systems Design | Spring 2016 | Jin-Soo Kim (jinsookim @skku.edu)

7

Implementing FTLs

Flash Cards, SSDs Embedded Flash Storage
L Applications L Applications

File Systems

File Systems

Block Device Driver Block Device Driver
Flash Translation Layer

Flash Translation Layer

'
'

ICE3028: Embedded Systems Design | Spring 2016 | Jin-Soo Kim (jinsookim@skku.edu)

Plethora of FTLs

HFTL
SAST SETL MS FTL BPLRU

BFTL AFTL FAST LazyFTL
KAST
Chameleon SR DFTL
LAST MNFTL

super-block scheme CFTL
P Log block scheme

GFTL p-FTL JFTL SF7L
Replacement block scheme
Hydra FTL vanila fTL 7
YanusFTL

Reconfigurable FTL
........... and so on

WAFTL UFTL

E. H. Nam, HIL: FTL Design Framework with Provably-correct Crash Recovery, NVRAMOS, 2013.

ICE3028: Embedded Systems Design | Spring 2016 | Jin-Soo Kim (jinsookim @skku.edu)

9

Performance Features

Indirect mapping (address translation)

Garbage collection

= Over-provisioning

Hot/cold data identification/separation

Exploiting parallelism over multiple channels/flash
chips/planes

= Request scheduling of multiple commands

= Buffer management

ICE3028: Embedded Systems Design | Spring 2016 | Jin-Soo Kim (jinsookim @skku.edu)

10

Reliability Features

Bad block management

Wear leveling

= Power-off recovery

Error detection and correction

Countermeasures for cell characteristics

ICE3028: Embedded Systems Design | Spring 2016 | Jin-Soo Kim (jinsookim @skku.edu)

11

Other Features

Encryption Compression Deduplication

ICE3028: Embedded Systems Design | Spring 2016 | Jin-Soo Kim (jinsookim @skku.edu) 12

Page Mapping

Address Mapping

write

LBA address space
(As seen by the host)

Mapping table
NAND flash

ICE3028: Embedded Systems Design | Spring 2016 | Jin-Soo Kim (jinsookim @skku.edu) 14

Address Mapping

= Required due to “no overwrite”

write LBA address space
(As seen by the host)

Mapping table
NAND flash

11

new data

ICE3028: Embedded Systems Design | Spring 2016 | Jin-Soo Kim (jinsookim @skku.edu) 15

Mapping Schemes

= Page mapping
* Fine-granularity page-level map table

* Hugh amount of memory space required for the map table

= Block mapping
* Coarse-granularity block-level map table
* Small amount of memory space required for the map table

= Hybrid mapping
* Use both page-level and block-level map tables
* Higher algorithm complexity

ICE3028: Embedded Systems Design | Spring 2016 | Jin-Soo Kim (jinsookim @skku.edu)

16

Page Mapping

= Mapping in page-level
* Logical page number = physical page number
* Page mapping table (PMT) required
* # entries in PMT == # pages visible to OS

* Translation

* Step |:logical sector number = logical page number (LPN)
* Step 2: LPN - physical page number (PPN) via PMT

ICE3028: Embedded Systems Design | Spring 2016 | Jin-Soo Kim (jinsookim @skku.edu)

17

Example: Page Mapping

= Flash configuration
* Page size: 4KB
* # of pages / block = 4

= Current state

* Written to page 0, 1,2, 8, 4,

= Reading page 5

Logical page #5

0000000101

ICE3028: Embedded Systems Design | Spring 2016 | Jin-Soo Kim (jinsookim @skku.edu)

Page Map Table
0 0 PBN: 0
1 1
2 2
3
4 4 PBN: 1
5 —
6
7
8 E PBN: 2
9
10
11
PBN: 3

Data Block

vui A OO N =R O

o
QDW\IO\U'I-hWNHOE

[N
= O

R R R R
i H W N

18

Example: Page Mapping

= Flash configuration
* Page size: 4KB
* # of pages / block = 4

= Current state
* Written to page 0, [,2,8,4,5

* New requests (in order)

=
PBOVw®o Nowu s WN RO

* Write to page 9
* Write to page 3
* Write to page 5

ICE3028: Embedded Systems Design | Spring 2016 | Jin-Soo Kim (jinsookim @skku.edu)

Page Map Table

0
1
2

4
5

PBN: 0

PBN: 1

PBN: 2

PBN: 3

Data Block

vui A OO N =R O

o
mooumm-hwnn—rog

[N
= O

R R R R
i H W N

19

Example: Page Mapping

= Flash configuration
* Page size: 4KB
* # of pages / block = 4

= Current state
* Written to page 0, [,2,8,4,5

* New requests (in order)

=
PBOVw®o Nowu s WN RO

* Write to page 9
* Write to page 3
* Write to page 5

ICE3028: Embedded Systems Design | Spring 2016 | Jin-Soo Kim (jinsookim @skku.edu)

Page Map Table

0
1
2

4
5

PBN: 0

PBN: 1

PBN: 2

PBN: 3

Data Block

OO un A ON R O

o
mooumm-hwnn—rog

[N
= O

R R R R
i H W N

20

Example: Page Mapping

= Flash configuration
* Page size: 4KB
* # of pages / block = 4

= Current state
* Written to page 0, [,2,8,4,5

* New requests (in order)

=
PBOVw®o Nowu s WN RO

* Write to page 9
* Write to page 3
* Write to page 5

ICE3028: Embedded Systems Design | Spring 2016 | Jin-Soo Kim (jinsookim @skku.edu)

Page Map Table

0

gu b NN =

PBN: 0

PBN: 1

PBN: 2

PBN: 3

Data Block

w o unn Ao ON R O

o
QDW\IO\W-DWNI—‘OE

[N
= O

R R R R
i H W N

21

Example: Page Mapping

= Flash configuration
* Page size: 4KB
* # of pages / block = 4

Page Map Table
PBN: 0

PBN: 1

= Current state
* Written to page 0, [,2,8,4,5

Invalidate
old page

PBN: 2

. 9
* New requests (inorder) 7 = 0.
11 I page write

PBN: 3

* Write to page 9
* Write to page 3
* Write to page 5

ICE3028: Embedded Systems Design | Spring 2016 | Jin-Soo Kim (jinsookim @skku.edu)

Data Block

H OO N B O

e X 450
9

3
5

)
&DW\lO\U‘IthHOE

[
= O

BB R R
v b WN

22

Page Mapping

* Pros
 Most flexible

* Efficient handling of small random writes
— A logical page can be located anywhere within the flash storage
— Updated page can be written to any free page

= Cons

* Large memory footprint
— One page mapping entry per page
— 32MB for 32GB (4KB page)

* Sensitive to the amount of reserved blocks (OP)
* Performance affected as the system ages

ICE3028: Embedded Systems Design | Spring 2016 | Jin-Soo Kim (jinsookim @skku.edu)

23

Garbage Collection

Why!

SSD Performance States - Normalized IOPS

———D1MLC =-—-D2MLC ~=D3IMLC =——D4MLC ~=D5MLC =D6MLC ‘D7SLC ==DB8SLC
1.2
FOB
4KB random writes

o b
‘ | Transition
|

\
1’°'3 ‘ Steady State —

\ (desirable test range)

Normalized IOPS

. | 600 700

Time (Minutes)

http://tfindelkind.com/2015/08/20/

ICE3028: Embedded Systems Design | Spring 2016 | Jin-Soo Kim (jinsookim @skku.edu) 25

Garbage Collection

= Garbage collection (GC)
* Eventually, FTL will run out of blocks to write to
* GC must be performed to reclaim free space
* Actual GC procedure depends on the mapping scheme

= GC in page-mapping FTL
* Select victim block(s)
* Copy all valid pages of victim block(s) to free block
* Erase victim block(s)
* Note: At least one free block should be reserved for GC

ICE3028: Embedded Systems Design | Spring 2016 | Jin-Soo Kim (jinsookim @skku.edu)

26

Example: GC in Page Mapping

= Current state
* Written to page 0, [,2,8,4,5
* Written to page 9, 3,5

Page Map Table

* New requests (in order)
* Write to page 8
* Write to page 9
* Write to page 3

* Write to page |
* Write to page 4

ICE3028: Embedded Systems Design | Spring 2016 | Jin-Soo Kim (jinsookim @skku.edu)

PBN: 0

PBN: 1

PBN: 2

PBN: 3

Data Block

H OO N B O

I X 35

w ©

Spare block

)
&DW\IO\U'I-thHOE

[
= O

BB R R
v b WN

27

Example: GC in Page Mapping

= Current state
* Written to page 0, [,2,8,4,5
* Written to page 9, 3,5

Page Map Table

* New requests (in order)
* Write to page 8
* Write to page 9
* Write to page 3

* Write to page |
* Write to page 4

ICE3028: Embedded Systems Design | Spring 2016 | Jin-Soo Kim (jinsookim @skku.edu)

PBN: 0

PBN: 1

PBN: 2

PBN: 3

Data Block
0
1
2

xos
X

4

I X 35

O 1l W ©

Spare block

)
&DW\IO\U'I-thHOE

[
= O

BB R R
u b W N

28

Example: GC in Page Mapping

= Current state
* Written to page 0, [,2,8,4,5
* Written to page 9, 3,5

Page Map Table

* New requests (in order)
* Write to page 8
* Write to page 9
* Write to page 3

* Write to page |
* Write to page 4

ICE3028: Embedded Systems Design | Spring 2016 | Jin-Soo Kim (jinsookim @skku.edu)

PBN: 0

PBN: 1

PBN: 2

PBN: 3

Data Block

0
1
2

xos
X

4
X450

3
5
8
9

Spare block

)
&DW\IO\U‘IthHOE

[
= O

BB R R
u b W N

29

Example: GC in Page Mapping

= Current state
* Written to page 0, [,2,8,4,5
* Written to page 9, 3,5

Page Map Table

* New requests (in order)
* Write to page 8
* Write to page 9
* Write to page 3

* Write to page |
* Write to page 4

ICE3028: Embedded Systems Design | Spring 2016 | Jin-Soo Kim (jinsookim @skku.edu)

PBN: 0

PBN: 1

PBN: 2

PBN: 3

Data Block

0
1
2

xos
X

4

=5
Xio
RSN

5

8
9
3

Spare block

)
&DW\IO\U‘IthHOE

[
= O

BB R R
u b W N

30

Example: GC in Page Mapping

= Current state
* Written to page 0, [,2,8,4,5
* Written to page 9, 3,5

Page Map Table Data Block

©
2

A IW N = O

* New requests (in order)
* Write to page 8

O WiIN O 0

* Write to page 9 5

* Write to page 3 —

* Write to page | Valid page copy : ;21

* Write to page 4 Updated page write Pﬂ—. 1 i:
15

ICE3028: Embedded Systems Design | Spring 2016 | Jin-Soo Kim (jinsookim @skku.edu) 31

Example: GC in Page Mapping

= Current state
* Written to page 0, [,2,8,4,5
* Written to page 9, 3,5

Page Map Table

* New requests (in order)
* Write to page 8
* Write to page 9
* Write to page 3

* Write to page |
* Write to page 4

ICE3028: Embedded Systems Design | Spring 2016 | Jin-Soo Kim (jinsookim @skku.edu)

Data Block
0

L 23
2

PBN: 1

PBN: 0

Spare block

(0]

PBN: 2

o o

3
PBN: 3 -)“(1-

4

)
&DW\IO\U'I-thHOE

[
= O

BB R R
u b W N

32

Write Amplification

= Ratio of data written to flash to data written from host

= Write Amplification Factor (WAF)

— Byteswrittento Flash _ Bytes written from Host+Bytes written during GC

Bytes written from Host Bytes writen from Host

= Generally, WAF is greater than one in flash storage

* Due to valid page copies made from victim block to free block
during GC
* WAF is one of metrics which shows the efficiency of GC

ICE3028: Embedded Systems Design | Spring 2016 | Jin-Soo Kim (jinsookim @skku.edu) 33

Example: Write Amplification

- Current state Page Map Table Data Block
* Written to page 0, 1,2,8,4,5 o B0l

1 [

* Written to page 9, 3,5

©
2

A IW N = O

* New requests (in order)

5

. 6

* Write to page 8,9, 3, | 7
5 8

8 9

- WAF = 1.08 9 10
Valid page co 3 1

* Total host writes: |3 o s i1
. i : 1 13

 Total flash writes: 14 Updated page write ——===% iy
15

ICE3028: Embedded Systems Design | Spring 2016 | Jin-Soo Kim (jinsookim @skku.edu) 34

Victim Selection Policies

= Greedy policy
* Selects a block with the largest amount of invalid data

* A block with the minimum utilization u

~ Number of valid pages in a block

“e Number of Pages in a block
* Pros
— Least valid data copying costs
— Simple
e Cons

— Does not perform well when there is high locality among writes
— Does not consider wear leveling

ICE3028: Embedded Systems Design | Spring 2016 | Jin-Soo Kim (jinsookim @skku.edu) 35

Victim Selection Policies

= Cost-benefit policy
* Selects a block with the maximum
Benefit (1 —u)
Cost N 2U

X age

— u: utilization
— age: the time since the last modification
* Pros

— Performs well with locality
— Somehow helps to achieve even wear

e Cons

— Computation/data overhead

ICE3028: Embedded Systems Design | Spring 2016 | Jin-Soo Kim (jinsookim @skku.edu)

36

Victim Selection Policies

= Cost-Age-Times (CAT) policy
e Selects a block with the minimum

Cost Times u
— X =
Benefit Age (1 —u) X age

— u: utilization

X count

— age: the time since the last modification
— count: erase count for the block

* Pros
— Performs well with locality
— Takes block wear counts into account

* Cons
— Computation/data overhead

ICE3028: Embedded Systems Design | Spring 2016 | Jin-Soo Kim (jinsookim @skku.edu)

37

Over-Provisioning

Physical Capacity

= OP (Over-Provisioning) = 1

Logical Capacity

* Extra media space on an SSD that does not contain user
data

= Typical SSDs have more space than is advertised

 Consumer SSDs:~ 7% e —

7.37% Inherent OP

— | Gigabyte (GB) = 107 bytes = 1,000,000,000 bytes ...
— | Gibibyte (GiB) = 230 bytes = 1,073,741,824 bytes

28% Factory-set OP

. 1OOGB/
* Enterprise SSDs: > 25% oynarmic o
— e.g. |00GB user space on 128GiB SSD:
~ 28% + 7% = 35% WP

ICE3028: Embedded Systems Design | Spring 2016 | Jin-Soo Kim (jinsookim @skku.edu) 38

Over-Provisioning

= Over-Provisioning Space (OPS) is used for
* Firmware images
* FTL metadata

* Bad block remapping
* Write buffers

= Garbage collection cost
 Affected by utilization of SSD space and Over-Provisioning
* Lower utilization = Better performance
* Larger OP - Better performance

ICE3028: Embedded Systems Design | Spring 2016 | Jin-Soo Kim (jinsookim @skku.edu)

39

Over-Provisioning

= Over-provisioning and random write workloads

* What about for sequential write workloads?

1.10
133 —— 7.4% Effoctive OP == 19.3% Effective OP —— 34.2% Effective OP |
: . 53.4% Effective OP e 79.0% Effective OP e 114.8% Effective OP [

4KB Random Write IOPS Normalized to FOB

10 T — ——
00] I I |] I] L] 1 1
0 50 100 150 200 250 300 350 400 450 500
Minutes

D. Glen, Differences in Personal vs. Enterprise SSD Performance, Micron Technology, Inc.

ICE3028: Embedded Systems Design | Spring 2016 | Jin-Soo Kim (jinsookim @skku.edu) 40

Over-Provisioning

= Over-provisioning on GC
* Larger OP results in lower WAF

Valid Data B /nvalid Data Data to be moved

7% Effective Over-Provisioning 25% Effective Over-Provisioning

-
="x
H

Valid data to move: 12 Valid data to move: 9

"

D. Glen, Differences in Personal vs. Enterprise SSD Performance, Micron Technology, Inc.

ICE3028: Embedded Systems Design | Spring 2016 | Jin-Soo Kim (jinsookim @skku.edu) 41

Over-Provisioning

= Some manufacturers provide software tools to
configure the amount of over-provisioning space

x
Samsung
. . L] EE
Maglc:|a n @) Over Provisioning 2
@ Disk Drive QOver Provisioning (OP) helps your 55D maintain optimal performance and lifespan.
A certain amount of disk space will be allocated for use only by the S5D controller.
fh Note: using a RAW partition may cause damage to your data
SAMSUNG 55D 830 Series (OS Drive) = | [l Primary Partition ‘
Disk 0
(23847 GB)
C
238.38 GB NTFS
OP Setting
OP Settings for drive C: Recommended OP allocation : 23.80GB Set OP

e

ICE3028: Embedded Systems Design | Spring 2016 | Jin-Soo Kim (jinsookim @skku.edu) 42

