A Log Buffer-Based Flash Translation Layer
Using Fully-Associative Sector Translation

SANG-WON LEE
Sungkyunkwan University
DONG-JOO PARK

Soongsil University
TAE-SUN CHUNG

Ajou University

DONG-HO LEE

Hanyang University
SANGWON PARK
Hankook University of Foreign Studies
and

HA-JOO SONG

Pukyong National University

Flash memory is being rapidly deployed as data storage for mobile devices such as PDAs, MP3
players, mobile phones, and digital cameras, mainly because of its low electronic power, nonvolatile
storage, high performance, physical stability, and portability. One disadvantage of flash memory
is that prewritten data cannot be dynamically overwritten. Before overwriting prewritten data,
a time-consuming erase operation on the used blocks must precede, which significantly degrades

This work was supported in part by MIC & IITA through IT Leading R&D Support Project, in part
by MIC & IITA through Oversea Post-Doctoral Support Program 2005, in part by the Ministry
of Information and Communication, Korea under the ITRC support program supervised by the
Institute of Information Technology Assessment, IITA-2005-(C1090-0501-0019), and also supported
in part by Seoul R&D Program(10660).

Authors’ addresses: Sang-Won Lee, School of Information and Communications Engineering,
Sungkyunkwan University, Suwon 440-746, Korea; email: swlee@acm.org; Dong-Joo Park, School
of Computing, Soongsil University, Seoul 156-743, Korea; email: djpark@ssu.ac.kr; Tae-Sun
Chung, College of Information Technology, Ajou University, Suwon 443-749, Korea; email:
tschung@ajou.ac.kr; Dong-Ho Lee, Department of Computer Science and Engineering, Hanyang
University, Ansan 426-791, Korea; email: dhlee72@cse.hanyang.ac.kr; Sangwon Park, Informa-
tion Communication Engineering, Hankook University of Foreign Studies, Yongin 449-791, Korea,
email: swpark@hufs.ac.kr; Ha-Joo Song, Division of Electronic, Computer, and Telecommunication,
Pukyong National University, Busan 608-737, Korea; email: hajusong@pknu.ac.kr.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
© 2007 ACM 1539-9087/2007/07-ART18 $5.00 DOI 10.1145/1275986.1275990 http://doi.acm.org/
10.1145/1275986.1275990

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 3, Article 18, Publication date: July 2007.

2 3 S.-W. Lee et al.

the overall write performance of flash memory. In order to solve this “erase-before-write” problem,
the flash memory controller can be integrated with a software module, called “flash translation
layer (FTL).” Among many FTL schemes available, the log block buffer scheme is considered to be
optimum. With this scheme, a small number of log blocks, a kind of write buffer, can improve the
performance of write operations by reducing the number of erase operations. However, this scheme
can suffer from low space utilization of log blocks. In this paper, we show that there is much room
for performance improvement in the log buffer block scheme, and propose an enhanced log block
buffer scheme, called FAST (full associative sector translation). Our FAST scheme improves the
space utilization of log blocks using fully-associative sector translations for the log block sectors.
We also show empirically that our FAST scheme outperforms the pure log block buffer scheme.

Categories and Subject Descriptors: B.3.2 [Design Styles]: Mass Storage; B.4.2 [Input/OQutput
Devices]: Channels and Controllers; D.4.2 [Storage Management]: Secondary Storage

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Flash memory, FTL, address translation, log blocks, associative
mapping

ACM Reference Format:

Lee, S.-W., Park, D.-J., Chung, T.-S., Lee, D.-H., Park, S., and Song, H.-J. 2007. A log buffer-
based flash translation layer using fully-associative sector translation. ACM Trans. Embedd.
Comput. Syst. 6, 3, Article 18 (July 2007), 27 pages. DOI = 10.1145/1275986.1275990
http://doi.acm.org/ 10.1145/1275986.1275990

1. INTRODUCTION

Flash memory is being rapidly deployed as data storage for mobile devices, such
as PDAs, MP3 players, mobile phones, and digital cameras, mainly because ofits
small size, low power consumption, shock resistance, and nonvolatile memory
[Douglis et al. 1994; Kim et al. 2002; Gal and Toledo 2005]. Compared to a hard
disk with the inevitable mechanical delay in accessing data (that is, seek time
and rotational latency), flash memory provides fast uniform random access. For
example, the read and write time per sector (typically, 512 bytes) for NAND-
flash memory is 15 and 200 us [Samsung Electronics 2005], respectively, while
each operation in contemporary hard disks takes around 10 ms [Hennessy and
Patterson 2003].

However, flash memory suffers from the write bandwidth problem. A write
operation is slower than a read operation by an order of magnitude. In addi-
tion, a write operation may have to be preceded by a costly erase operation
because flash memory does not allow overwrites. Unfortunately, write opera-
tions are performed in a sector unit, while erase operations are executed in
a block unit: usually, one block consists of 32 sectors. An erase operation is
very time-consuming, compared to a write operation; usually, a per-block erase
time is 2 ms [Samsung Electronics 2005]. These inherent characteristics of
flash memory reduce write bandwidth, which is the performance bottleneck in
flash-based mobile devices.

To relieve this performance bottleneck, it is very important to reduce the
number of erase operations resulting from write operations. For this, flash
memory vendors have adopted an intermediate software module, called flash
translation layer (FTL), between the host applications (in general, file systems)
and flash memory [Estakhri and Iman 1999; Kim and Lee 2002; Kim et al. 2002;

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 3, Article 18, Publication date: July 2007.

A Log Buffer-Based Flash Translation Layer . 3

Shinohara 1999]. The key role of FTL is to redirect each write request from the
host to an empty area that has been already erased in advance, thus softening
the limitation of “erase-before-write.” In fact, various FTL algorithms have thus
far been proposed [Chung et al. 2006] and each FTL performance varies con-
siderably, depending on the characteristics of the applications. Among them,
the log block scheme is well known for excellent performance [Kim et al. 2002].
The key idea of this scheme is to maintain a small number of log blocks in
flash memory as temporary storage for overwrites. If a collision (an overwrite)
occurs at a sector of flash memory, this scheme forwards the new data to an
empty sector in the log blocks, instead of erasing the original data block. Since
these log blocks act as cushions against overwrites, the log block scheme can
significantly reduce the number of total erase operations.

However, when an overwrite occurs in a data block, the write can be redi-
rected only to one log block, which is dedicated for the data block; it cannot
be redirected to other log blocks. For a given overwrite, if there is no log block
dedicated to its data block, a log block should be selected as a victim and re-
placed. Thus, if there are a limited number of log blocks, they might have to be
frequently replaced for overwrites. Unfortunately, with the log block scheme,
the log blocks being replaced usually have many unused sectors. That is, the
space utilization, which can be formally defined as “the percentage of the writ-
ten sectors in a log block when it is replaced,” of each log block is low. In our
view, low space utilization degrades the performance of the log block scheme.
We need to find out the root cause of low space utilization. For this, we view the
role of log blocks from a different perspective. The log blocks in the log block
scheme could be viewed as “a cache for overwrites,” in which a logical sector
to be overwritten can be mapped only to a certain log block—its dedicated log
block. From this viewpoint, the address associativity between logical sectors
and log blocks is of block level. Thus, we call the log block scheme presented
by Kim et al. [2002], the block-associative sector translation (BAST) scheme.
We argue that this inflexible block-level associativity in BAST is the primary
cause of low space utilization of log blocks.

In this paper, we propose a novel FTL scheme that overcomes the low space
utilization of BAST. The basicidea is to make the degree of associativity between
logical sectors and log blocks higher, thus achieving better write performance.
In our scheme, the sector to be overwritten can be placed in any log block and
we, therefore, call our scheme the fully-associative sector translation (FAST)
scheme. Hereafter, we denote the FAST scheme and the BAST scheme shortly
as FAST and BAST, respectively. As in the computer architecture’s CPU cache
realm [Hennessy and Patterson 2003], if we view the log blocks as a kind of cache
for write operations and enlarge the associativity, we can reduce the write miss
ratio and, therefore, achieve better FTL performance. The main contributions
of this paper can be divided into three achievements: (1) to identify the major
problem of BAST and its root cause, (2) to provide the motivation of FAST and
describe its principal idea and algorithms, and (3) to compare the performance
of FAST and BAST over various configurations. An interesting result is that
FAST can, in a best case, result in more than 50% reduction both in total elapsed
time and in total number of erases.

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 3, Article 18, Publication date: July 2007.

4 3 S.-W. Lee et al.

File System

PCMCIA Interface
Logical address

(o N

Flash Translation Layer]

SRAM

, Y e -
Mapping Tablg

Controller] @

address

\k J j NAND Flash Mej

Compact Flash System

Fig. 1. An anatomy of the NAND flash memory system.

The remainder of this paper is organized as follows. Section 2 gives a brief
overview of flash memory and FTL and explains BAST and its disadvantages.
Section 3 describes the key idea of FAST and its algorithms. Section 4 compares
the performance of our scheme with that of BAST. Finally, Section 5 concludes
this paper and outlines future work.

2. BACKGROUND

In this section, we provide a brief overview of flash memory and FTL, and
explain in detail the principles behind BAST and its disadvantages. The latter
part is somewhat long, but we need to explain BAST in detail because the
scheme is not well known in the computer science field.

2.1 Flash Memory and the Flash Translation Layer

Figure 1 shows the general organization of a NAND-type flash memory system.
It consists of one or more flash memory chips, a controller mainly executing
FTL codes in ROM, an SRAM maintaining address-mapping information, and a
PCMCIA host interface. The host system views flash memory as a hard disklike
block device and thus issues read or write commands along with “logical” sector
addresses and data. FTL translates the commands into low-level operations,
such as read, write, and erase, using “physical” sector addresses. During the
address translation, FTL looks up the address-mapping table in SRAM. When
issuing overwrites, FTL redirects the physical address to an empty location (free
space), thus avoiding erase operations. After finishing an overwrite operation,
FTL changes the address-mapping information in SRAM. The outdated block
can be erased later.

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 3, Article 18, Publication date: July 2007.

A Log Buffer-Based Flash Translation Layer . 5

Besides the address translation from logical sectors to physical sectors,
FTL carries out several important functionalities, such as guaranteeing data
consistency and uniform wear leveling (or so called block recycling). FTL should
be able to maintain a consistent state for data and metadata, even when flash
memory encounters an unexpected power outage. For uniform wear leveling,
FTL should make every physical block erased as evenly as possible without
performance degradation. This functionality of uniform block usage is essen-
tial, because there is a physical upper limit on the maximum number of erases
allowed for each block (usually, 100,000 times). If a block is erased above the
threshold, the block may not function correctly, and thus it is marked as invalid.
Even though the block may still work, FTL marks it as invalid for the safety
of flash memory. Therefore, if only some physical blocks have been intensively
erased, they become unusable very quickly, therefore reducing the durability of
flash memory. Therefore, FTL need to use all the blocks as uniformly as possi-
ble. Even though these kinds of FTL functionalities are important issues, they
are beyond the scope of this paper. In this paper, we focus on the performance
issue of the address-mapping technique.

Let us revisit the address-mapping issue. The mapping between the logi-
cal address (which the file system uses to interface with flash memory) and
the physical address (which the flash controller actually uses to store and re-
trieve data) can be managed at the sector, block, or hybrid level. In sector-
level address mapping, a logical sector can be mapped to any physical sector
in flash memory. In this respect, this mapping approach is very flexible. How-
ever, its main disadvantage is that the size of mapping table is too large to
be viable in the current flash memory-packaging technology. For example, let
us consider a flash memory of 1 GB size and a sector size of 512 bytes, which
has 2 million sectors. In this case, the mapping information is too large to
maintain in SRAM. In block-level address mapping, a logical sector address
consists of a logical block number and an offset. The mapping table main-
tains only the mapping information between logical and physical blocks, while
the offsets of the logical and physical blocks are identical. Therefore, the size
of block-mapping information is very small, compared to the size of sector-
level mapping information. However, this approach also has a serious pitfall:
when an overwrite for a logical sector is necessary, the corresponding block
is remapped to a free physical block. The overwrite is done at the same off-
set in the new physical block, the other sectors of the original data block
are copied to the new physical block, and ‘finally’ the original physical block
should be erased. With regard to block-level mapping, this “erase-before-write”
problem is an inevitable performance bottleneck, mainly because of the in-
flexibility in address mapping. In order to overcome the disadvantages of the
sector-level and block-level mapping approaches, several hybrid approaches,
including BAST, have been proposed. In the hybrid scheme, in addition to a
block-level mapping table, a sector-level mapping table for a limited number
of blocks is maintained. Thus, it satisfies the size limitations of mapping infor-
mation and also mitigates the “erase-before-write” problem drastically. For a
detailed discussion on this issue, please refer to Chung et al. [2006] and Gal and
Toledo [2005].

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 3, Article 18, Publication date: July 2007.

6 . S.-W. Lee et al.

2.2 The BAST Scheme: An Overview

File systems view flash memory as a set of logical sectors—a hard disklike block
device. The write function for flash memory can be defined as follows: write(Isn,
data), which means “write a given sector data at the logical sector Isn.” When
receiving a write request from a file system, FTL finds a physical location in
flash memory to write the sector as follows. First, it calculates the logical block
number (/bn) using the given Isn.! It then retrieves the physical block number
(pbn) corresponding to the Ibn from the block-level mapping table.? Next, FTL
calculates the offset of the retrieved physical block where the sector data will
be written.? Finally, it writes the sector data at the resulting offset in the data
block (which is another representation of the physical block).

If the target sector in the data block is already written, FTL writes the given
sector data at the same offset in a free-block allocated with the free-block list,
and copies all the other written sectors in the data block to the free block.
Then, FTL erases the data block and returns it to the free-block list. Whenever
a collision between the current write and the previous writes occurs, a large
number of sector copies and erase operations are inevitable. This occurrence is
called a merge operation. To address this problem, many FTL techniques have
been suggested. Among them, BAST is known to be the best FTL technique
[Chung et al. 2006]. When encountering a collision, BAST reduces the number
of merge operations by writing data to temporary storage, called log blocks. In
the following, we describe BAST in detail using an example in Figure 2.

In Figure 2, we assume that the number of sectors per block is four and
the number of log blocks is two. The upper-left part in Figure 2 indicates a
sequence of writes from the file system, and the upper-center and the upper-
right part shows the block-level and the sector-level mapping table, respectively.
Both mapping tables are usually maintained in SRAM. When the first write
operation is called, the BAST algorithm gets data block 10 from the block-level
mapping table using logical block 1 (= 4 div 4). It then stores a given sector
at offset 0 (= 4 mod 4) in data block 10. The second write operation proceeds
similarly. In case of the third write operation, BAST finds a collision in data
block 10, and, therefore, writes the sector at the first sector in a log block (i.e.,
pbn = 20), dedicated to logical block 1 from the log block list. In case of the
fourth write operation, the sector is directed to the next empty sector in the log
block. The following write operations will generate the second log block (pbn =
30) and the sector-level mapping table.

A collision can occur in other data blocks, for example, data block 12 in
Figure 2. In this case, since there is no available log block for data block 12,
BAST selects, erases, and returns one of the log blocks (we call it a victim log
block). Before returning the victim log block, it needs to merge the victim log
block and its data block: BAST copies the up-to-date sectors from the two blocks
to a free block, and exchanges the free block with the original data block. In

bn = (Isn div # sectors_per_block).

2BAST maintains both block-level and sector-level address mapping tables, which exist in the data
block and the log block, respectively.

3offset = (Isn mod # sectors_per_block).

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 3, Article 18, Publication date: July 2007.

A Log Buffer-Based Flash Translation Layer . 7

(4, .)
write (5, ..) Block-level mapping Sector-level mapping
write (4, ..) table for data blocks table for log blocks
write (4, ..)
Ibn | pbn Ibn | pbn Isns
ite (8, ..
Sequence of writes y]it: 29 ; 0 5 1 20 {4, 4}
from file system write(10,..) 1 | 10 2 | 30 |{8910,11}
write(11,..)
2 11
write (8, ..) N X
write(9, ..)
write(10,..)
write(11,..)
pbn=! pbn=10 pbn=11 pbn=12
Data block Sector
area
Area s
4|5 8 |9 |10 |11 pare
/) NN
Log block
= bn=30
Area pbn=20 1,1, 8 |9 [10|11] P
. —
~

Log block group

Fig. 2. Processing write operations in the BAST scheme.

addition, BAST updates the block-level mapping table and removes the entry
corresponding to the victim log block from the sector-level mapping table. BAST
then, erases both the victim log block and its data block, and returns them to the
free-block list. If a new log block is necessary, it is allocated from the free-block
list. One interesting point is that the merge operation can be optimized if the
victim log block satisfies a condition. For example, in Figure 2, all the writes in
the log block of pbn = 30 are sequential and the total number of written sectors
is equal to the capacity of a block. In this case, instead of copying sector data
from the victim log block to the free block, we can complete a merge operation
just by exchanging the victim log block with its data block; this optimization is
called a “switch” operation [Kim et al. 2002].

2.3 Another View of the Log Block Scheme: A Cache for Writes

In this section, we see the role of log blocks from another perspective, and this
view will help us to understand the disadvantages of the log block scheme.
For this, we would like to briefly explain the principal role of the CPU cache
and its basic functions. Because of the principle of locality in data access of
computer programs [Hennessy and Patterson 2003], a small cache combined
with the memory hierarchy can provide users with a very fast, large, and cheap
memory system (Figure 3a). In this respect, the log blocks in the log block
scheme can also be viewed as “a cache for overwrites” (Figure 3b). In case of
collisions, we can complete the write operation much faster by writing sectors
in the log blocks (that is, the cache), instead of overwriting its original data
block.

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 3, Article 18, Publication date: July 2007.

8 . S.-W. Lee et al.
Directed mapping vs. Fully associative mapping
Block 01234567 ! 0123 4567 Block
No. ! No.
1
Cache i
i
Mapping = I
(Block No.) mod I
(# of Blocks in Cache) : A Block can be placed
anywhere in the cache
Memory

Block 01 23 4567891
No. 0

(a) Associativity between memory and CPU cache

Sectors from one logical block
can be mapped only to one log block

1o
Flash Il -
Memory B 121
B
Block 01 23 456789111111 11112222
No. ‘0(1234567890123
Original Data Blocks ~Log Blocks =

Cache for Wri

(b) Log blocks: a cache for write operations

Sectors from one logical block
can be mapped to any log block
—————

0 3 0 HE
Flash 7]] Flash] 3 |
Memory B o] Memory [2] ol
3 1) 1
Block 01 234567891111 1111112222 Block 0 1 23456789:)111213‘21516171819%212223
No. ¢1234567890123 No. 2 A
Original Data Blocks Log Blocks Original Data Blocks Log Blocks

(c) Block associativity in log block scheme (d) Full associativity between logical sectors

and log blocks

Fig. 3. CPU cache versus log blocks: associativity.

As depicted in Figure 3a, there is the associativity issue between memory
and cache regarding how memory blocks are mapped to cache blocks. There
are various associativity schemes used in computer architecture, including
direct-mapped, n-way associative, and fully associative approaches [Hennessy
and Patterson 2003]. With the direct-mapped approach, a memory block can be
placed only in a dedicated cache block via a mathematical formula, while the
fully associative approach allows a block to be placed anywhere in the cache.
In terms of the associativity, we could say that the log block scheme takes the
block-associative sector translation approach, because the scheme directs all
the overwrites for one logical block only to its dedicated log block, as depicted
in Figure 3c.

2.4 Disadvantages

This block-level associativity of BAST results in two performance problems. The
first problem is analogous to the high miss ratio in direct-mapped associativity
between CPU cache and main memory, which results in the block-thrashing
[Hennessy and Patterson 2003]. BAST has a similar block-thrashing problem.
If the cache in flash memory (namely, the log blocks) cannot accommodate all
collisions during the execution of a host application (especially, writes for hot
blocks in flash memory), BAST will experience numerous capacity misses, thus
causing the block thrashing. For instance, assume that two blocks (and four
sectors per each block) are allocated for the cache and that an overwrite pattern

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 3, Article 18, Publication date: July 2007.

A Log Buffer-Based Flash Translation Layer . 9

~ 100

R

w

§ 80]

re)

o 60 | (@ Pattern A
,—? m Pattern B
g 40 | [~ | |OPattern C
8

g 20 (MM mil Im

§ 0

g 4 8 16 32 64

7] Number of log blocks

Fig. 4. Low space utilization in the BAST scheme.

is the sequence “S0, S4, S8, S12, S0, S4, S8, S12,” where Si is the logical sector
number for each overwrite and the original data of each logical sector is already
stored in the data block. In addition, we assume that all the original data blocks
are already filled. Please note that S0, S4, S8, and S12 come from different
blocks, because each block holds four sectors. For every write, starting from
the first S8 overwrite, BAST should replace either of the two log blocks. We
refer to this phenomenon as log block thrashing. Each victim replacement will
accompany an expensive merge operation. Moreover, every victim log block in
this example holds only one sector of data when it is replaced; the other three
sectors remain empty.

Another performance problem arises from block-level associativity. Assume
that under the same cache above, the overwrite operations for one hot logical
block occur successively, e.g., the write pattern is the sequence “S0, S2, S1,
S3, S1, S0, S2, S3.”4 In BAST, for every fourth write, the log block allocated to
the hot logical block should be merged with its original data block, although
the other log block is idle. In summary, when intensive overwrites for one hot
block occur during a given time window, the log block scheme might result in
increased write operations.

Because of these two problems, the log blocks in BAST would show very low
space utilization when they are replaced from the log buffer. Each sector in the
log block is a very precious resource in the sense that it might prevent an “erase-
before-write” phenomenon if exploited properly. Low space utilization of the log
blocks indicates that there is an opportunity for performance improvement in
BAST. In order to measure the severity of low space utilization, we simulate
BAST over various workloads and calculate the space utilization of the log
blocks being replaced. We used three workloads: pattern A of mainly random
writes generated from a Symbian environment and pattern B and C, mainly
of sequential writes generated from a digital camera. For the experiment, we
measured the space utilization by increasing the number of log blocks from 4
to 64. Figure 4 shows the experimental result for space utilization in BAST. As
shown in the figure, the space utilization for pattern A is under 50%, even when

4The hot logical block number is 0.

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 3, Article 18, Publication date: July 2007.

10 o S.-W. Lee et al.

the log block number is sixteen. The situation is not much better with patterns
B and C.

As defined in Section 1, the space utilization is “the percentage of the written
sectors in a log block when it is being replaced.” With this definition in mind,
let us analyze the result in Figure 4. When the number of log blocks is less than
the number of hot data blocks (that is, the data blocks of which some sectors are
actively overwritten) at a certain point of time, each log block might become a
victim so quickly that it has little chance to fill itself with corresponding sectors.
However, as more log blocks are available, each log block could stay longer in
the log buffers, and thus has more chance to fill itself with more sectors. This
is the reason why the average space utilization of the log blocks increases with
the number of log blocks.

For a fixed number of log blocks, the space utilization in BAST gets worse
as the write pattern becomes more random (e.g., in Figure 4, pattern A is more
random than patterns B and C). This can be explained as follows: because a
more random pattern implies more hot blocks at a certain point of time and
thus experiences more capacity misses, each log block has less chance to fill
itself. Our concern is whether we can improve the utilization of the precious
free sectors in log blocks, thus achieving high performance, even with a limited
number of log blocks (less than 10).

3. FAST: A LOG BUFFER SCHEME USING FULLY-ASSOCIATIVE SECTOR
TRANSLATION

3.1 Key Idea

Based on the discussion in Section 2, we can consider a natural extension of the
log block scheme: “What if we take the fully associative approach in mapping
logical sectors to log blocks?” In this approach, a logical sector can be placed
in any log block, which gives two performance optimization opportunities. The
first one is to alleviate log block thrashing. Even if the number of hot logical
blocks in a given time window is greater than that of log blocks, a higher degree
of associativity between logical sectors and log blocks can help reduce the miss
ratio in finding an empty sector in the log blocks. This is very similar to the
reduction in the cache miss ratio when the associativity between memory blocks
and cache blocks increases [Hennessy and Patterson 2003]. For example, under
the fully-associative approach, the write sequence “S0, S4, S8, S12, S0, S4, S8,
S12” in Section 2.4 does not require any log block replacement and thus does
not require any erase or merge operation.

The second (and more important) optimization is that we can avoid many
merge operations, which are inevitable, in BAST when a dedicated log block
has no sector to accommodate overwrites. Consider again the write sequence
“S0, 82, S1, S3, S1, S0, S2, S3” in Section 2.4 and assume that the logical sectors
S0, S1, S2, and S3 are already written to the corresponding data block. If we
adopt the fully-associative mapping approach, two log blocks are sufficient to
cover all the write operations. We can avoid a costly merge operation for every
(4th + 1) write (which is inevitable in BAST) and can also delay the merge

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 3, Article 18, Publication date: July 2007.

A Log Buffer-Based Flash Translation Layer . 11

operations until there is no empty sector in the log blocks. In summary, when
one of the logical blocks is very hot in a given time period, the full associativity
approach can avoid many merge operations.

Even though these optimizations might seem to be naive, the performance
impact is considerable. In subsequent sections, the further advantages of
full associativity between logical sectors and log blocks will be described in
detail.

3.2 The Architecture

The architecture of FAST is analogous to that of BAST. One important difference
is that log blocks in FAST are divided into two areas: one log block is used for
sequential writes and the other blocks for random writes. Let us explain the
reason why a log block is dedicated for sequential writes. As stated in Section
2.2, a switch operation is more efficient than a merge operation. Since most
of the workload traced from flash memory systems contains a large number
of sequential writes, it is likely that many switch operations arise from them.
However, since our FAST scheme takes the fully-associative address-mapping
approach, we cannot take advantage of switch operations unless sequential
writes are handled separately from random writes. That is, if both types of
write patterns are intermixed only in a fully associative manner, there is little
chance for switch optimization in FAST. For this reason, FAST keeps a dedicated
log block for sequential writes. In the subsequent sections, the SW log block
denotes the log block for sequential writes and the RW log blocks represent the
log blocks for random writes.

The other architectural difference between FAST and BAST is that FAST
maintains separate sector-level mapping tables for the above two types of log
blocks. The sector-mapping table for the SW log block keeps information on
which logical block the current log block corresponds to, and how many sectors
are currently stored in the log block. Meanwhile, a more complex mapping table
is needed for the RW log blocks. This table records which sectors are written
and the offsets of the RW log blocks. In theory, a sector can be placed on any
RW log block. However, we take a rather simple approach of filling the RW log
blocks with sectors in sequence.

This architecture of FAST yields a small overhead in sector read operations,
compared to BAST. For every sector read operation in FAST, we should check
whether the most recent version of the sector exists in the log blocks. You need
to note that this check is accomplished by scanning the sector-level mapping
table in SRAM, not by scanning the log blocks. Thus, for every read operation
against sectors in log blocks, FAST yields the overhead for scanning the sector-
level mapping table in SRAM. If we assume 128 MB flash memory with 512
byte-sized sectors, there are 256 K sectors. Hence, we need 18 bits to represent
an lsn (logical sector number), and each entry in sector-level mapping table can
be stored in 4 bytes. If we assume 6 log blocks and each block has 32 sectors,
then the total number of entries in sector-level mapping table is 192. If we
scan the sector mapping table from the end of the mapping table in order to
check whether a logical sector is in the table, we need to read 96 entries from

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 3, Article 18, Publication date: July 2007.

12 o S.-W. Lee et al.

SRAM, on average. The contemporary 4-byte read time from SRAM is 10 ns®
[Hennessy and Patterson 2003], and thus the average time of a scan becomes
960 ns (about 1 us), and this overhead is small compared to the read time for a
sector, which is typically 15 us [Samsung Electronics 2005]. BAST also has the
overhead of memory scan for sector read operations because they also maintain
a sector-level mapping table, as shown in Figure 2, but they need to scan only
the sector-mapping information of a log block, and not the entire sector-level
mapping table.

Finally, consider the issues of meta-data and data consistency. FAST is ex-
actly the same to BAST in managing the block-level mapping table. That is,
block-level mapping information is stored in some dedicated blocks of flash
memory, called “map blocks,” and the block-level mapping table is cached in
SRAM for the fast lookup of mapping information at runtime [Kim et al. 2002].
The consistency between block-mapping tables in SRAM and in flash memory
can be achieved as in BAST. Besides the block-mapping table, FAST maintains
the sector-mapping table in SRAM. We need to consider how to achieve the con-
sistency of a sector-mapping table when we encounter an unexpected power-off.
In the earlier FTL schemes, such as M-system [Ban 1995], with sector-level ad-
dress mapping, they record the mapping information between a logical sector
and a physical sector in the spare area of the physical sector. From the sector-
mapping information in the spare area, the sector mapping table in SRAM
is dynamically constructed during the booting time. Our sector-level mapping
table also can be maintained in this way.

3.3 Handling Write Operations

In this subsection, we explain how FAST handles the write operations issued
from the file system. As mentioned in Section 3.2, the log blocks in FAST are
divided into two groups: the SW and the RW log blocks. When a collision oc-
curs in a specific data block, the corresponding sector is directed to either of
two groups, as depicted in Figure 5. For every sector to be written, FAST first
examines whether its insertion into the SW log block will result in a switch
operation. If so, the sector data is appended in the SW log block; otherwise, the
data is written in the RW log block.

If a log block is to be a candidate of switch operation, it must satisfy two
conditions: (1) the lsn at the first offset in the log block is divided by the number
of sectors per block (for example, 4), that is, Isn mod 4 = 0, and (2) the log block
is filled up with the sectors, which are sequentially written from the beginning
offset to the final offset. Thus, FAST directs only the sectors satisfying either
condition into the SW log block.

When a collision occurs in a data block, the corresponding sector is among
one of three cases in Figure 5, where we assume the number of sectors per

5This value of access time is in case of random access time. Therefore, the average access time
for each of 96 entries, in case of sequential scan, would be much less. In addition, we believe that
several hundred bytes of all the sector-mapping table can be cached in L1 cache of the CPU used
in the FTL controller (e.g., ARM), and the real overhead will be much smaller than the estimated
overhead in this paper.

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 3, Article 18, Publication date: July 2007.

A Log Buffer-Based Flash Translation Layer . 13

Block-level

e Ol 2 2223
Ibn | pbn 7
5]

7 P ite already d
R |71 I
2 12 7/';?5 .

Data block 1 3|56 8 10 (11]12]13] -~
area
a 5\
— ~ i
Log block 12113 8|13 [10f |11
area
A log block for Log blocks for
sequential writes random writes

Fig. 5. Performing write operations in the FAST scheme.

block is four and two log blocks exist for random writes. First, if the sector to
be overwritten satisfies the first condition, then it is inserted into the SW log
block. If the SW log block is already occupied by other sectors, it is merged with
its data block, erased, and then returned to the free-block list. A new block is
allocated for the SW log block and the sector is inserted into the new block. In
case 1 of Figure 5, sector 4 satisfies the first condition and is inserted into the
SW log block. However, since other sectors (sectors 12 and 13) exist in the log
block, merge and erase operations for the log block must precede the insertion.

If the sector to be overwritten satisfies the second condition, it is sequentially
inserted into the next empty location of the SW log block. It is exemplified in
case 2.1 of Figure 5, where we assume that the sector 4 is already written to the
log block prior to the sector 5. Since the sector 5 satisfies the second condition, it
is inserted into the SW log block. On the other hand, sectors 6 and 5 of the cases
2.2 and 2.3 do not satisfy the second condition. If these sectors are inserted into
the SW log block, we cannot apply the switch optimization to the log block and,
therefore, simply merge the SW log block with its data block. Only if the SW log
block is filled with the sectors satisfying one of the two conditions, can FAST
perform a switch operation.

Finally, if the sector to be overwritten does not satisfy either condition, then
it is inserted into one of the RW log blocks. As previously described, the sector
data is appended to the next empty location in the RW log blocks. If there is
no empty sector in the RW log blocks, FAST selects a victim block in a round-
robin fashion, and merges it with corresponding data blocks. We would like to
remind the readers that there could be more than one corresponding data block
for a victim block because of the fully-associative mapping in FAST. In turn,
FAST erases the victim log block and returns it the free-block list. In case 3 of

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 3, Article 18, Publication date: July 2007.

14 o S.-W. Lee et al.

Figure 5, since the sector 6 does not satisfy either condition, it is inserted into
the RW log blocks.

Figure 6 describes an algorithm of the write operation issued from the file
system to FTL. In Figure 6, Algorithm 1 shows how the function write() works,
which, in turn, calls the function writeToLogblock() in Algorithm 2 when a
collision occurs. If there is no collision, the sector data is simply written to its
data block. Algorithm 2 works as follows. If the given offset is zero, according
to another condition, FAST executes a switch operation or a merge operation
and then stores the given data into the new SW log block, which corresponds
to the case 1 of Figure 5. If the offset is not zero, the given sector data is
appended to the SW log block (line 13 in Algorithm 2), written to the new block
by the merge operation (line 15 in the Algorithm 2), or put into the RW log
block (line 20 in the algorithm 2). These correspond to cases 2.1, 2.2, 2.3, and
3 in Figure 5, respectively. In the next subsection, we describe in detail the
merge operation for the log blocks and the victim selection issue for RW log
blocks.

3.4 Handling Merge Operations

All three cases mentioned in the previous subsection give rise to a merge or
switch operation. As explained in Section 2.1, a merge operation is achieved
in three steps: (1) to copy the up-to-date sectors from the log block and its
corresponding data block to a free-block, (2) to change the mapping information,
and (3) to erase both the data block and the log block and return them to the free-
block list. In order to optimize a merge operation, it is necessary to minimize the
number of copy and erase operations. This section describes how FAST handles
switch operations and merge operations.

* A switch operation in the SW log block: This case is similar to the switch
operation in BAST. If the SW log block is filled up with the sequential sectors,
FAST exchanges it with its data block, erases the data block, and returns the
erased data block to the free-block list.

* A merge operation in the SW log block: In FAST, there are two cases
which require a merge operation in the SW log block: (1) when the SW log
block encounters a sector satisfying the first condition in Section 3.3, and (2)
when the SW log block encounters a sector violating the second condition of
Section 3.3. The merge operation of FAST is analogous to that of BAST, but we
can apply another optimization technique to the merge operations in FAST
when the SW log block has a particular state. For instance, in Figure 7a,
consider the SW log block containing sectors of S4, —1, S6, —1 where —1
indicates “no sector written.” In this case, FAST will copy the data of empty
sectors with —1’s (sector 5, in this example) from its original data block,
exchange the updated log block with its data block, and, finally, erase the
data block and return the erased data block to the free-block list. Please note
that this optimization is distinct from the switch operation in BAST. This
optimization requires a small number of copies and only one erase operation,
while the original merge operation requires a sectors-per-block number of
copies and two erase operations for the SW log block and its original data

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 3, Article 18, Publication date: July 2007.

A Log Buffer-Based Flash Translation Layer . 15

Algorithm 1 write(lsn, data) /* data are logically written to the sector of Isn */

1 Ibn = Isn div SectorsPerBlock;

2 offset := Isn mod SectorsPerBlock;

3 pbn = getPbnFromBMT(/bn); /* get pbn from block-level mapping table */
4 if a collision occurs at offset of the data block of pbn

5 call writeToLogblock(Isn, Ibn, offset, data);

6 else

7 write data at offset in the data block of pbn;

8 endif

Algorithm 2 writeToLogblock(lsn, Ibn, offset, data)
1 if offset is zero /* Case 1 in Figure 5 */
2 if there are no empty sectors in the SW log block
/* the log block is filled with sequentially written sectors */
3 perform a switch operation between the SW log block and
its corresponding data block;
/* after switch, the data block is erased and returned to the free-block list */

4 else

/* before merge, a new block is allocated from the free-block list */
5 merge the SW log block with its corresponding data block;

/* after merge, the two blocks are erased and returned to the free-block list */
6 end if
7 get a block from the free-block list and use it as a SW log block;
8 append data to the SW log block;
9 update the SW log block part of the sector-mapping table;
10 else
11 if the current owner of the SW log block is the same with /bn
12 last_Isn = getLastlsnFromSMT(/bn); /* SMT: sector-mapping table */
13 if [sn is equivalent with (last_Isn+1) /* Case 2.1 in Figure 5 */
14 append data to the SW log block;
15 else /* Case 2.2 and 2.3 in Figure 5%/
16 merge the SW log block with its corresponding data block;
17 get a block from the free-block list and use it as a SW log block;
18 end if
19 update the SW log block part of the sector-mapping table;
20 else /* Case 3 in Figure 5 */
21 if there are no rooms in the RW log blocks to write data
22 select the first block of the RW log block list as a victim;
23 merge the victim with its corresponding data block;
24 get a block from the free-block list and add it to the end of

the RW log block list;

25 update the RW log block part of the sector-mapping table;
26 end if
27 append data to the RW log blocks;
28 end if
29 endif

Fig. 6. Write algorithm in FAST.

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 3, Article 18, Publication date: July 2007.

16 o S.-W. Lee et al.

Log blocks for

Data block random writes
A
-1 -1 -1 -1
Data block A A A A
415|6]|-1 0(1(2(3 1831038]0/2
Copy \
A log block for
sequential writes |4 |5 | 6 | -1 Freeblock| 111213
(a) A merge in the SW log block (b) A merge in the RW log blocks

Fig. 7. Performing merge operations in FAST.

block. This optimization could also be applied to BAST, but we first suggest
the technique in this paper.

¢ A merge operation in the RW log blocks: If no more empty sectors exist
in the RW log blocks, FAST chooses one of the RW log blocks as victim and
merges the victim block with its corresponding data blocks. The victim se-
lection is done in a round-robin fashion. With regard to merge operations in
the RW log blocks, the readers should note that the sectors in a victim might
originate from several different logical blocks and, therefore, the number of
merge operations per a victim block is equal to the number of logical blocks
corresponding to the sectors in the victim.® In FAST, each merge operation
per logical block proceeds as follows. First, in order to find all sectors for
the logical block, FAST scans the sector-level mapping table for the RW log
blocks. For each sector found, FAST copies the most up-to-date version from
the RW log blocks to a free-block. Then, FAST marks all the found sectors in
the sector-level mapping table as invalid state (—1). If a sector with invalid
state is encountered in the future victim block, we can ignore the sector, be-
cause we know that its up-to-date version is already stored in its data block.
Next, FAST selectively fills each empty sector in the free-block with its cor-
responding sector in the data block, and, in turn, exchanges the free-block
with the data block. The data block is erased and returned to the free-block
list. Finally, after merging all the logical blocks in the victim, FAST erases
the victim log block itself and returns it to the free-block list. For example, let
us consider Figure 7b, where the first log block is a victim. Since the sectors
in the victim block come from two different logical blocks 0 (for S1 and S3)
and 2 (for S8 and S10), two merge operations for (S1, S3) and (S8, S10) are
required. The merge operation for (S1, S3) proceeds as follows: The up-to-
date sectors of logical block 0, i.e., sector 1 in the victim block and sectors 2
and 3 in the nonvictim log blocks, are copied to a free block. Then, the sector
0 in the original data block is copied to the free block. The data block is then

61n contrast, all the sectors in each victim log block in BAST originates from one logical block and,
thus, only one merge operation is required per victim.

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 3, Article 18, Publication date: July 2007.

A Log Buffer-Based Flash Translation Layer . 17

erased and returned to the free-block list. The merge operation for (S8, S10)
proceeds similarly; then, the victim log block is erased and returned to the
free-block list.

3.5 An Analytical Comparison to BAST

Before proceeding, we would like to compare BAST and FAST in an analytical
way so that the readers can understand the advantages of FAST more clearly.
For this, we will analyze why and how the full associativity in FAST can reduce
the number of erase operations, compared to BAST, in various cases, in terms of
the number of hot data blocks and the number of log blocks. In this subsection,
for the brevity of description, we denote the number of hot data blocks as nhb,
the number of the log blocks as nlb, and the number of sectors-per-block as
nspb. We cover the following four cases: (1) when nhb is equal to nlb, (2) when
nhb is one, (3) when nhb is greater than nlb, and (4) when nhb is between one
and nlb. In this subsection, we will not take large sequential write patterns
into considerations, because both BAST and FAST show a similar performance
characteristic for the patterns and, instead, focus on the random write patterns.
In case of FAST, the nlb merely indicates the number of the RW log blocks,
except for the SW log block, because we do not consider the sequential write
patterns.

* When nhb is equal to nlb. In this case, BAST and FAST will require nearly
the same number of erase operations. From the perspective of BAST, each
sector to be overwritten has its dedicated log block and requires a merge op-
eration only when its dedicated log block is full. Therefore, a merge operation
is necessary, on average, in every nspbth sector writes, and a merge will re-
sult in two erase operations: one for the data block and the other for the log
block. FAST also requires a merge operation in every nspbth sector writes,
that is, when a new log block is full. In order to merge the first victim, FAST
needs the (nlb + 1) erase operations if we assume that the random write pat-
terns are uniformly distributed: one for the victim log block and the others
for all the hot data blocks. However, for each of the following (nlb — 1) victim
log blocks, FAST can complete the merge operations of the victim by erasing
only the victim block, since almost of the sectors were already marked as in-
valid during the merge operation of the first victim. Thus, FAST will require
approximately 2 * nlb erase operations by when the first nlb log blocks are
merged and, thus, on average, each victim replacement requires two erase
operations, as in BAST.

* When there exists only one hot data block. In an extreme case where
all the sectors to be overwritten come from only one logical block (that is,
one hot data block), BAST writes all the sectors only in a dedicated log block
and thus requires a merge operations in every nspbth write, even though
other log blocks are empty. In contrast, FAST utilizes every log block and
thus accepts the sector writes until it all the log blocks are filled. In addition,
while merging the first victim block, FAST invalidates all the sectors in other
log blocks and, thus, it can complete the merge operations of the following
victim blocks by erasing only the victim block, because all the sectors in the

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 3, Article 18, Publication date: July 2007.

18 o S.-W. Lee et al.

following victims were already marked as invalid during the merge operation
of the first victim. Thus, by the time the first nlb log blocks are merged, FAST
can save the (nlb —1) erase operations, compared to BAST. From this, we
could argue that the performance of FAST is scalable to the nlb, because it
can save more erase operations as the n/b increases. In contrast, BAST does
not benefit from the increased nib because of its block-level associativity.

* When nhb is greater than nlb. In the case where the number of hot blocks
at a certain point of time is greater than nlb, BAST should replace a log block
whenever a sector without its dedicated log block in the log buffer arrives,
and only a small fraction of the victim block is, in most cases, used. That is,
the block-level associativity results in log block thrashing and low space uti-
lization of the log blocks. In the worst case, each sector to be overwritten may
require a victim replacement, which, in turn, requires two erase operations.
However, FAST caches the sectors to be overwritten in a new log block until
it is full. When replacing the first victim block, FAST might require the (nspd
+1) erase operations, at most: one for the victim block and the others for the
nspb different data blocks. In a case where the nhb is less than the nspb, the
number of erase operation will be nhd plus one. As in case of only one hot
data block, while merging the first victim block, FAST will invalidate most
of the sectors in other log blocks and, thus, complete the merge operations
of the following (nlb — 1) log blocks just by erasing the victim block because
most of the sectors in the following victim might be already marked as in-
valid. Thus, FAST requires approximately the (nspb + nlb) erase operations
by the time the first nlb blocks are replaced. Please note that at the point of
time when the first nlb blocks are replaced, exactly nlb * nspb sectors have
been overwritten. Meanwhile, for this number of sectors to be overwritten,
BAST will, in its worst case, require (2 * nlb * nspb) erase operations. With
regard to the scalability issue, the performance of BAST does not improve
with the nlb until it equals to the number of hot blocks, while FAST can re-
duce the number of erase operations, because more sectors will be marked
as invalid and thus there is more chance to skip erase operations for data
blocks.

* When nhb is between one and nlb. As the nhbd increases from one to
nlb, the performance of BAST is approaching that of FAST, because BAST
distributes the sectors to be written uniformly over more log blocks and thus
the number of erase operations decreases. Meanwhile, the performance of
FAST does not improve with the number of hot blocks. When the nlb becomes
above the nlb, the performance of BAST becomes radically worse, because of
block thrashing.

In summary, compared to BAST, the full associativity between logical sec-
tors and log blocks in FAST is very helpful in reducing the number of erase
operations, in all cases, except when nhb is equal to nlb.

Before closing this subsection, we would like to comment on the overhead
of merge operations in FAST. Some readers might think that the logic of the
merge operations in FAST seems to be quite complex, compared to BAST, and
it might have a negative effect on performance. In fact, more than one merge

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 3, Article 18, Publication date: July 2007.

A Log Buffer-Based Flash Translation Layer . 19

operations can occur when a victim log block is replaced in FAST, because of
its full associativity. For example, let us assume that the log blocks are filled
with only two sectors, Si and Sj, which come from different data blocks. When
replacing a victim, FAST executes two merge operations for the two data blocks.
(Of course, O-FAST can even skip these merge operations.) However, when
the other log blocks are later replaced, we do not need any merge operation
because all the sector data are already invalidated during the previous merge
operations. That is, even though more than one merge operation are necessary
when a victim log block is replaced in FAST, the additional merge operations
are executed in advance. Moreover, FAST can skip many merge operations,
which are inevitable in BAST. At this point, you might still suspect that a
merge operation for a data block requires the full scan of the log blocks, which
is another overhead. Instead of scanning the log blocks, however, FAST looks
up the sectors of the data block from the sector-mapping table in SRAM and
reads only the most recent sector data from the log blocks. Except for a sector-
mapping table scan, the sector read time for one merge operation in FAST is
exactly the same as in BAST. As described in Section 3.2, it takes about 1 us to
scan the sector-mapping table, which is negligible, compared to the expensive
erase operations in a merge operation. In summary, the seemingly complex logic
of merge operations in FAST does not result in real performance overhead.

3.6 O-FAST

The performance of the log block based schemes (both BAST and FAST) is
mainly determined by the frequency of merge operations resulting from log
block replacement. FAST outperforms BAST because it delays the merge oper-
ations until all log blocks are filled and skips some merge operations, reducing
the number of merge operations. This recognition brings us to ask whether we
can delay the merge operations a little longer or even skip more merge oper-
ations. In this subsection, we propose another optimization, which delays the
merge operations longer than FAST, called O-FAST (the abbreviation stands
for Optimized FAST). The idea of O-FAST can be easily illustrated using an
example. Let us consider Figure 7b, in which the victim block has two groups
of sectors (S1, S3) and (S8, S10) from two different logical data blocks and thus
two merge operations are required in FAST. However, if up-to-date versions of
sectors (S8, S10) exist also in the nonvictim log blocks (i.e, the second log block),
we can safely skip the merge operation for (S8, S10), because the sector data in
current victim log block is out of date and we can merge the corresponding data
block with more up-to-date sector data. In order to guarantee the consistency
between the read and write requests from the file system, FTL has to maintain
the up-to-date sectors either in the data blocks or in the log blocks.

Based on this observation, O-FAST can delay (in effect, skip) the merge oper-
ation for a logical data block if more recent versions for all those sectors exist in
the nonvictim log blocks. In other words, O-FAST postpones the merge opera-
tion for a logical data block until we can no longer delay the merge operation. In
this respect, we call the merge operation in O-FAST as “lazy merge.” In contrast,
we call the merge operation in FAST as “eager merge,” because FAST initiates

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 3, Article 18, Publication date: July 2007.

20 o S.-W. Lee et al.

a merge operation for a logical data block whenever it finds any sector for the
data block in a victim log block. In Figure 7b, for example, O-FAST delays (that
is, skips) the merge operation for sectors (S8, S10) while FAST executes the
merge operation immediately. In particular, when the sectors from one logical
block are repeatedly and intensively accessed, O-FAST can delay most merge
operations for the block, and thus outperforms FAST.

3.7 Performance Analyses Using Examples

In this section, we compare BAST versus FAST and FAST versus O-FAST using
the examples in Figures 8 and 9. In the figures, we assume that the number of
log blocks is four and the number of sectors per a block is four. In FAST and O-
FAST, one log block is used for sequential writes and the other three log blocks
for random writes. Regarding the victim selection for log block replacement,
BAST and (O-)FAST have a little variation in their strategies. In case of BAST,
since the victim selection strategy is not clearly mentioned by Kim et al. [2002],
we assume the following: (1) if an overwritten sector has its corresponding log
block and the block is full, the log block is selected as victim, (2) if the new sector
does not have its corresponding log block, we select a log block to which we can
apply the switch optimization as victim, if any, and (3) in other case, we select a
victim log block in a round-robin fashion. (O-)FAST selects a victim block from
the RW log blocks in a round-robin way. The write pattern is intended to include
both small random writes (S1, S9, Figure 8) and large sequential writes (S27,
S28, S29, ..., Figure 8).

In Figure 8, FAST requires seven erase operations to process all the write
requests, while BAST needs nine erase operations. Both FAST and BAST re-
quire four merge operations. In BAST, each normal merge operation requires
two erase operations. In FAST, however, even though the first victim replace-
ment requires three erase operations (one for the victim block and two for the
data blocks 1 and 3), two merge operations after the write request @ result in
simple merge operations, which requires just one erase operation.

Figure 9 shows how many erase operations O-FAST requires for the same
write pattern used in Figure 8. Prior to the write request €0, O-FAST proceeds
like FAST in Figure 8. The first merge operation happens at the write request @0,
where the victim log block is the first block in the RW log blocks. Fortunately,
since up-to-date versions of all the sectors in the victim (i.e., S1’s and S9’s)
exist in the nonvictim log blocks, we can delay the merge operations for the
two corresponding blocks and just need to erase only the victim block. The
other merge operations in the figure require only one erase operation. For this
reason, O-FAST incurs five erase operations to process all the write requests,
while FAST requires seven erase operations. In summary, the “lazy merge” in
O-FAST allows us to skip two erase operations, compared to the “eager merge”
in FAST. This is the intrinsic difference between the two schemes.

4. PERFORMANCE EVALUATION

To evaluate and compare the performance characteristics of BAST, FAST,
and O-FAST, we developed a simulator for each scheme and performed

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 3, Article 18, Publication date: July 2007.

A Log Buffer-Based Flash Translation Layer . 21

LBN:0 LBN:2 LBN:6
N o]
E E initial state]
- Log blocks for A log block for
Log blocks random writes sequential writes
¥ LBN:2 LB @ | wite(1,..)
9 LBN:6
9 write (9, ...)
9
9 write (27, ...)
- " "
Performing a normal merge operation wiite (1, ..)
(# of erases : 2) Performing a switch operation and
@ erasing the corresponding data block
write (9,
o2 LBNG) (#of erases : 1)
[o] write (28, ...)
[o |
n write (1, ...)
Performing a nomal merge operation write (9, ...)
(# of erases : 2)
write (29, ...)
write (1, ...)
write (9, ...)
Performing two merge operations
wiite (30, ...) (# of erases : 3)
LBN:0 LBN:2 write (1, ...) 1
1 9
1 write (9, ...) 1
1 9
1 @ write (31, ...) Performing a switch operation and
Performing a switch operation and . erasing the corresp?ndmg data block
erasing the corresponding data block write (1, ...) (#of erases : 1)
(#of erases : 1)
LBN:2 write (9, ...) n
o] wite 32, .) —
[o | [o]
“ write (1, ...)
Just erasing the victim log block
Performing a nommal merge operation write (9, ...) (#of erases : 1)
(# of erases : 2)
LBN:2 write (33, ...) 7 7
o | _ 9
n write (1, ...) 1
—_—
| o | 9
[o | write (9, ...)
. . Just erasing the victim log block
Performing a nomal merge operation N
. write (34, ...) (# of erases : 1)
(# of erases : 2)
9 # total erases 7
LBN:0 LBN:2 LBN:8 LBN:7
final state
0
(a) BAST (b) FAST

Fig. 8. Performance analysis: BAST versus FAST.

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 3, Article 18, Publication date: July 2007.

22 o S.-W. Lee et al.

write (9, ...)
LBN:7
write (29, ...) 1 1 1 1 28
9 9 9 29
> —_—
write (1, ...) 1 1 1
9 9 9
write (9, ...)
Just erasing the victim log block
write (30, ...) (# of erases : 1)
LBN:7
write (1, ...) 1 1 1 28
9 9 9 29
—_—
write (9, ...) 1 1 1 30
9 9

@ write (31, ...)

Performing a switch operation and
erasing the corresponding data block

write (1, ...) (# of erases : 1)
write (9, ...
() 1 1 1 1
ite (32 9 9 — 9
write (32, ...) 1 y 1
9 9 9
write (1,...)
) Just erasing the victim log block
write (9, ...) (# of erases : 1)
) LBN:8
write (33, ...)
1 1 1 1 32
9 9 9 33
wite (1,..) ——=>] ; 1
9 9 9
write (9, 1,)
Just erasing the victim log block
write (34, ...) (#of erases : 1)
total erases 5
LBN:8
1 1 1 32
final state 9 9 9 33
1 1 34
9 9

Fig. 9. Performance analysis: O-FAST.

trace-driven simulations. For each given trace, the simulator counts the num-
ber of read, write, and erase operations FTL generates, and calculates the total
elapsed time using the formula total_elapsed_time = read_count*read_time +
write_count*write_time + erase_count*erase_time), where we assume 15 us for a
sector read, 200 us for a sector write, and 2 ms for a block erase.

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 3, Article 18, Publication date: July 2007.

A Log Buffer-Based Flash Translation Layer . 23

Table I. The Traces Used in Experiments

Pattern Description # of writes
A Workload from digital camera (A company) 2,199,200
B Workload from digital camera (B company) 3,144,800
C Workload from Linux O/S 398,000
D Workload from Symbian O/S 404,900
E Uniform random writes (generated synthetically) 150,000

Table I shows the five traces we used in the experiment: the first four traces
(pattern A—D) have been obtained from the authors of BAST [Kim et al. 2002]
and the fifth trace (pattern E) contains uniform random writes, which have been
synthetically generated. We believe that these patterns are complex enough to
show the characteristics of the FTL schemes and to compare them. The random
pattern E, in fact, is not a typical workload of contemporary flash memory
applications. Nevertheless, because the flash memory is expected to be used
as the storage media for more general computer systems with more random
write patterns, including laptop computers [Lawton 2006; Paulson 2005], it is
meaningful to compare three FTL schemes over a random write pattern.

Figure 10 shows the experimental results of BAST, FAST, and O-FAST us-
ing the trace workload, where the total elapsed time is measured in the units
of a second. If necessary, we will explain the performance difference of FAST
and O-FAST in detail. The performance metrics we used are the number of to-
tal erase count and the total elapsed time. Compared to read/write operations,
the erase operation is more time consuming and, therefore, the efficiency of
an FTL scheme mainly depends on how many erase operations it can avoid.
In the experiment, we test the impact of the number of log blocks by increas-
ing the number of log blocks from 4 to 64 for each configuration. FAST beats
BAST consistently in all the patterns. Now, we will investigate each case in
detail.

First, let us explain the case of pattern E with uniform random writes, in
which the advantage of FAST/O-FAST is clearly demonstrated. Each write oper-
ation in BAST may result in a costly merge operation, since the write operation
can place only in its dedicated log block. Please note that the performance in
BAST does not improve with the number of log blocks: because the write pat-
tern is very random (that is, the number of hot blocks is generally more than
64), the space utilization of the log blocks in BAST does not improve. In con-
trast, each write operation in FAST is appended in the end sector of the log
blocks and, thus, erase operations can be considerably reduced. In addition,
the performance improves with the number of log blocks. The pattern E does
not include any overwrite sequence for which O-FAST will benefit and, thus,
the performance of FAST and O-FAST is identical.

Next, let us examine the pattern A and B, which are generated from digi-
tal cameras and thus contain both small random writes and large sequential
writes. In both patterns, FAST consistently outperforms BAST, especially when
the number of log blocks is equal to or less than 16. The performance gap in
this range is mainly because of the reduction of erase count in the small ran-
dom overwrites. As we mentioned in Section 2, the intelligent switch operation

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 3, Article 18, Publication date: July 2007.

24 o S.-W. Lee et al.

[C]BAST [jj] FAST [] O-FAST

X-axis : # of log blocks, Y-axis in left side : erase count, Y-axis in right side : elapsed time(secs).

200000 2000
150000 —l 1500
100000 1000
50000 — 500
0 ‘ : : : 0 ‘ : : :
4 8 16 32 64 4 8 16 32 64
(a) Pattern A: Digital Camera(Company A)
400000 3000
300000 2500 M
2000 1
200000 1 1500
100000 I I» 1000
500
0 s s s . 0 s s
4 8 16 32 64 4 8 16 64
(b) Pattern B: Digital Camera(Company B)
20000

15000

10000

5000

—l

16 32 64 64

(c) Pattern C: Linux

250

200
150
100
50
0 . .
8
8

25000
20000
15000
10000

5000

—

32
200
1 150 W
100
50
4 8 16 32
32

64

= =
=

4

(d) Pattern D: Symbian

300000 2000

250000 | _ _ B
200000 1500

150000 1000

100000

50000 I_’: n ﬁ 500 ﬁ
0 L L L L 0 L L
4 8 16 32 64 4 16 32 64

(e) Pattern E: Random

Fig. 10. Performance evaluation: results.

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 3, Article 18, Publication date: July 2007.

A Log Buffer-Based Flash Translation Layer . 25

Table II. The Number of Switch Operations:

FAST versus BAST
Pattern A Pattern B
of log blocks | BAST | FAST | BAST | FAST
4 49,213 | 48,529 | 79,214 | 78,472
8 49,212 | 48,628 | 78,910 | 78,734
16 49,278 | 48,628 | 78,664 | 78,720
32 48,757 | 48,628 | 78,470 | 78,770
64 48,083 | 48,693 | 77,759 | 78,794

of BAST works well for large sequential writes. Our FAST scheme can also
support sequential writes efficiently by introducing the SW log block. In order
to check the efficiency of FAST against large sequential writes, we counted the
number of switch operations both in BAST and FAST. As indicated in Table II,
the number of switch operations in each scheme is almost same. From this re-
sult, we can conclude that the SW log block in FAST works well. As the number
of log blocks increases, the performance of BAST approaches that of FAST. This
is because the log block thrashing drastically diminishes as the number of log
blocks becomes larger than the number of hot blocks and, therefore, the space
utilization of each log block improves. With these patterns, O-FAST shows a
small performance improvement over FAST. In fact, these patterns do not con-
tain the overwrite patterns that O-FAST prefers.

Finally, let us consider patterns C and D, which contain many small random
writes and small large sequential writes. In pattern D, the number of hot blocks
at any point of time is about three or four. Therefore, regardless of the number
of log blocks, the performance of BAST remains almost identical. In contrast,
the performance of FAST improves with the number of log blocks. When the
number of log blocks is less than or equal to eight, O-FAST shows some improve-
ment over FAST. This is because small random writes in pattern D go perfectly
well with the O-FAST preferred pattern. However, as the number of log blocks
increases, the performance of FAST converges to that of O-FAST, which can be
explained as follow: As the number of log blocks increases, the sectors in a vic-
tim block have more chance to be invalidated so the corresponding data blocks
are less likely to be merged. In pattern C, the performance gap between FAST
and O-FAST is negligible and the performance of BAST gets closer to FAST as
the number of log blocks approaches 16.

One interesting result is that the performance of BAST depends upon the
number of log blocks, especially when the number of hot blocks is large, while
FAST shows excellent performance even with a small number of log blocks. In
practice, the number of log blocks is generally limited to less than 10. With
BAST, if the number of hot blocks gets larger than the number of log blocks,
the performance degrades significantly. With FAST, a write operation can be
done in any log block so that the performance does not much depend on the
number of log blocks. As the number of log blocks increases, FAST can delay
merge operations longer and thereby avoid some merge operations (as in the
pattern D). This explains the performance improvement with the number of log
blocks in FAST (especially in the pattern E).

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 3, Article 18, Publication date: July 2007.

26 o S.-W. Lee et al.

5. CONCLUSIONS

In this paper, we proposed a novel FTL scheme, FAST, that outperforms the
well-known log block scheme BAST. Its performance advantage mainly comes
from the full associativity between the logical sectors and log blocks. By ex-
ploiting full associativity, FAST can avoid the log block thrashing phenomenon,
delay merge operations as late as possible, and skip many unnecessary merge
operations. These optimizations drastically reduce the number of expensive
erase operations. Another advantage of FAST is that it guarantees a reason-
able performance even with small number of log blocks and its performance
improves gracefully with the number of log blocks. In fact, FAST with only 4 to
8 log blocks can provide the same performance as BAST with more than 30 log
blocks.

In the future, we will devise some more optimization opportunities from full
associativity. We will also explore what the theoretical performance optimum
for flash memory is under a given workload. One good starting point is the
concept of “ideal scheme” in Kim et al. [2002], which is defined as “a scheme
that performs one erase operation for every n-sector write operation, where n
is the number of sectors per block.” Finally, we would like to investigate the
chasm between traditional file systems (i.e., Windows’ FAT, Unix’s file system)
and Flash’s FTL, and its symptoms, such as file system aging. This work will
be a corner-stone for flash-aware file system.

ACKNOWLEDGMENTS

We wish to thank Dr. Sang-Lyul Min and his FAST research group at Seoul
National University for providing us with the several workloads used in this
paper. We would also like to thank three anonymous reviewers who provided
many useful comments that helped improve the quality of this paper.

REFERENCES

Ban, A. 1995. Flash file system. United States Patent, No. 5,404,485, April.

Cuung, T. S, Park, D. J., Parg, S. W., Leg, D. H., Leg, S. W,, anp Song, H. J. 2006. System
software for flash memory: a survey. In Proceedings of the 2006 IFIP International Conference
on Embedded And Ubiquitous Computing (EUC 2006). (Aug.) Seoul, Korea.

Douaus, F., Caceres, R., KaasHoek, M. F., L1, K., MarsH, B., AND TAUBER, J. A. 1994. Storage
alternatives for mobile computers. In Proceedings of the 1st Symposium on Operation Systems
Design and Implementation (OSDI), Monterey, CA, November 1994, J. LEPrEAU, Eds. Usenix
Association, Berkeley, CA. 25-37.

Estaksrr, P. anD Iman, B. 1999. Moving sequential sectors within a block of information in a flash
memory mass storage architecture, United States Patent, No. 5,930,815, July.

GaL, E. aND ToLEDO, S. 2005. Algorithms and data structures for flash memories. ACM Computing
Surveys 37, 138-163.

HEeNNESSY, J. L. AND ParTERSON, D. A. 2003. Computer Architecture: A Quantitative Approach, 3rd
ed. Morgan Kaufmann, San Mateo, CA.

Kiv, B. S. anD LEE, G. Y. 2002. Method of driving remapping in flash memory and flash memory
architecture suitable therefore, United States Patent, No. 6,381,176, April.

Ky, d. S., Kiv, J. M., NoH, S. H., MIN, S. L., anp CHo, Y. K. 2002. A space-efficient flash translation
layer for compactflash systems. IEEE Transactions on Consumer Electronics 48, 366-375.

LawTton, G. 2006. Improved flash memory grows in popularity. IEEE Computer 39, 1 (Jan.), 16—
18.

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 3, Article 18, Publication date: July 2007.

A Log Buffer-Based Flash Translation Layer . 27

Paurson, L. D. 2005. Will hard drivers finally stop shrinking? IEEE Computer 38,5 (May), 14-16.
Samsunc ELEcTRONICS. 2005. Nand flash memory & smartmedia data book.

SHiNOHARA, T. 1999. Flash memory card with block memory address arrangement. United States
Patent, No. 5,905,993, May.

Received April 2005; revised October 2005 and March 2006; accepted May 2006

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 3, Article 18, Publication date: July 2007.

