
Lab 8: Kernel-based FTL
Application-Managed Flash(FAST’16)

Sungjin Lee, Ming Liu, Sangwoo Jun, and Shuotao Xu, MIT CSAIL;

Jihong Kim, Seoul National University; Arvind, MIT CSAIL

Joohyung Park(joohyungpark@csl.skku.edu)

Computer Systems Laboratory

Sungkyunkwan University

http://csl.skku.edu/

Tranditional FTL

host

Wear
Leveling

FTL

Garbage
Collection

Page
Allocation

Address
Mapping

ECC

This Work: Buck-Passing FTL

Host

Wear
Leveling

Garbage
Collection

Page
Allocation

Address
Mapping

FTL

ECC

Page Allocation via Static Mapping

• A Segment
• a group of blocks from each

channel in a same way(bank)

• Fixed Size
• # chs * # pages/blk * 8K

• No implicit invalidation in
the unit of segment via
trim

• Error returns for overwrite
requests

File Modification

In-place updates
on little metadata
generating victims

No invalidation for
block-level append
only system

Device-level GC

Device-level valid pages
are copied

Are they valid at the host-
side also?

No implicit device-level GC

Host-level GC

Re-invalidate / re-written by
host with generating other
victims to be merged

Simple Device-Level I/O Scheduler
1
2
3
4
5

C0 C3 C6

C1 C4 C7

C2 C5 C8

Pipelining

Maximum parallelism
achieved by simple sorting

Advantages for Static Mapping

• No fine-grained mapping and GC
• Reduce HW overhead(mapping table, computing resources)

• Guarantee predictable performance from user

• Easy to exploit system level parallelism

Disadvantages for Static Mapping

• The size of allocation unit is
• Large and fixed

• Hard to exploit flash level parallelism in the worst case

• Most of user platforms are forced to fix their codes
• Even platforms issuing I/O in log structured manner, there are many

overwrites on the metadata to manage their system

Compatibility of AMF

• Same set of I/O interface

• Newly define block I/O interfaces
• Non-rewritable sectors

• Linear array of sectors to form a segment

• Unit of TRIM

• Advantage of AMF comparing with SDF is compatibility
• Only prerequisite process is modification on User platform to eliminate in-

place-updates

• No consideration for MLC/TLC power failure at all

Modified F2FS: ALFS
No modification from F2FS, but metadata segments

Inode-Map Segment Management

Exploit same mechanism of
LFS inode management

Flush with modification of TIMB block

Check-point Segment Management

Evaluation Environment

• CPU
• Xeon 24 cores, 1.6GHz

• DRAM
• Physically 24GB, but set to 1.5GB not to load whole mapping table

• SSD
• 8ch X 4wy, 512GB NAND flash

• 1 block = 128 * 4K pages

• Raw performance:
• RR(240K IOPS) RW(67K IOPS) SR(930MB/s) SW(260MB/s)

Benchmark Workloads

Memory Overhead and WAF

• Low memory overhead to
manage mapping table, but
additional overhead for
TIMBs

• EXT4 vs F2FS
• Duplication of log-structured

management

• PFTL vs DFTL
• I/Os of mapping table

FIO Benchmark Results

Buffering effect of FIO

I/O suspension cause by dirty
eviction of mapping entries

Amplified by low
hit ratio of
mapping table

Duplication of log-
structured
management

Postmark Benchmark Results

Low utilization of storage -> Reduced GC High utilization of storage -> Great GC

