Lab 8: Kernel-based FTL Application-Managed Flash(FAST'16)

Sungjin Lee, Ming Liu, Sangwoo Jun, and Shuotao Xu, MIT CSAIL; Jihong Kim, Seoul National University; Arvind, MIT CSAIL

Joohyung Park(joohyungpark@csl.skku.edu)

Computer Systems Laboratory

Sungkyunkwan University

Tranditional FTL

This Work: Buck-Passing FTL

Page Allocation via Static Mapping

- A Segment
 - a group of blocks from each channel in a same way(bank)
- Fixed Size
 - # chs * # pages/blk * 8K
- No implicit invalidation in the unit of segment via trim
- Error returns for overwrite requests

File Modification

No invalidation for block-level append only system

In-place updates on little metadata generating victims

(a) Initial State

Device-level GC

Host-level GC

Re-invalidate / re-written by host with generating other victims to be merged

(c) Garbage collection at LFS

Simple Device-Level I/O Scheduler

Advantages for Static Mapping

- No fine-grained mapping and GC
 - Reduce HW overhead(mapping table, computing resources)
 - Guarantee predictable performance from user
- Easy to exploit system level parallelism

Disadvantages for Static Mapping

- The size of allocation unit is
 - Large and fixed
 - Hard to exploit flash level parallelism in the worst case
- Most of user platforms are forced to fix their codes
 - Even platforms issuing I/O in log structured manner, there are many overwrites on the metadata to manage their system

Compatibility of AMF

- Same set of I/O interface
- Newly define block I/O interfaces
 - Non-rewritable sectors
 - Linear array of sectors to form a segment
 - Unit of TRIM
- Advantage of AMF comparing with SDF is compatibility
 - Only prerequisite process is modification on User platform to eliminate inplace-updates
- No consideration for MLC/TLC power failure at all

Modified F2FS: ALFS

Inode-Map Segment Management

Flush with modification of TIMB block

Check-point Segment Management

Evaluation Environment

- CPU
 - Xeon 24 cores, 1.6GHz
- DRAM
 - Physically 24GB, but set to 1.5GB not to load whole mapping table
- SSD
 - 8ch X 4wy, 512GB NAND flash
 - 1 block = 128 * 4K pages
 - Raw performance:
 - RR(240K IOPS) RW(67K IOPS) SR(930MB/s) SW(260MB/s)

Benchmark Workloads

Category	Workload	Description			
File System	FIO	A synthetic I/O workload generator			
	Postmark	A small and metadata intensive workload			
Database	Non-Trans	A non-transactional DB workload			
	OLTP	An OLTP workload			
	TPC-C	A TPC-C workload			
Hadoop	DFSIO	A HDFS I/O throughput test application			
	TeraSort	A data sorting application			
	WordCount	A word count application			

Memory Overhead and WAF

 Low memory overhead to manage mapping table, but additional overhead for TIMBs

- EXT4 vs F2FS
 - Duplication of log-structured management
- PFTL vs DFTL
 - I/Os of mapping table

Stapacity FTL FTL FTL AFTL ALFS 512 GB 4 MB 96 MB 512 MB 4 MB 5.3 MB 1 TB 8 MB 186 MB 1 GB 8 MB 10.8 ME	Capacity	Block-level	Hybrid	Page-level	AMF		
		FTL	FTL	FTL	AFTL	ALFS	
1 TB 8 MB 186 MB 1 GB 8 MB 10.8 ME	512 GB	4 MB	96 MB	512 MB	4 MB	5.3 MB	
	1 TB	8 MB	186 MB	1 GB	8 MB	10.8 ME	

	EXT4+ PFTL	EXT4+ DFTL	F2FS+ PFTL		F2FS+ DFTL		AMF
	FTL	FTL	FS	FTL	FS	FTL	FS
FIO(SW)	1.00	1.00	1.00	1.00	1.00	1.00	1.00
FIO(RW)	1.41	1.45	1.35	1.82	1.34	2.18	1.38
Postmark(L)	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Postmark(H)	1.12	1.35	1.17	2.23	1.18	2.89	1.16
Non-Trans	1.97	2.00	1.58	2.90	1.59	2.97	1.59
OLTP	1.45	1.46	1.23	1.78	1.23	1.79	1.24
TPC-C	2.33	2.21	1.81	2.80	1.82	5.45	1.87
DFSIO	1.0	1.0	1.0	1.0	1.0	1.0	1.0
TeraSort	1.0	1.0	1.0	1.0	1.0	1.0	1.0
WordCount	1.0	1.0	1.0	1.0	1.0	1.0	1.0

FIO Benchmark Results

I/O suspension cause by dirty eviction of mapping entries

Amplified by low hit ratio of mapping table

Duplication of logstructured management

Postmark Benchmark Results

