
Advances in Electrical and Computer Engineering Volume 13, Number 3, 2013

Multi-Layer Real-Time Support
for JVM-based Smart Phone Systems

Youngjoo WOO1, Donghyouk LIM2, YungJoon JUNG2, Euiseong SEO1
1Sungkyunkwan University, Republic of Korea

2Electronics and Telecommunications Research Institute, Republic of Korea
*Corresponding author: euiseong@skku.edu

1 Abstract—Employing the Java virtual machine (JVM)

architecture provides smart phone systems stability and
security by sandboxing third-party applications and
controlling their behavior. However, the JVM layer hinders
applications from notifying the operating system scheduler
about their timeliness requirements; therefore, applications
sometimes fail to respond on time. In order to improve the
responsiveness of smart phone applications, this paper
proposes two schemes. First, for existing applications that
cannot be rebuilt, we modify the kernel scheduler to value task
priorities over fairness. Second, we propose cross-layer real-
time support APIs to deliver applications' priorities to the
kernel scheduler, which will help developers to add real-time
scheduling support to their applications. Our prototype
demonstrates that the suggested schemes dramatically improve
response times and throughputs of prioritized applications.

Index Terms—real-time schedulers, scheduling algorithm,
smart phones, Java, virtual machines.

I. INTRODUCTION

The third-party smartphone app market is dramatically
expanding. Currently, there are over a million mobile apps
in various app marketplaces. Users rely on these apps for a
variety of tasks, from posting mildly amusing comments on
social network services to online banking [1].

Thus, most modern smart phone systems are equipped
with multitasking capability, and the degree of concurrency
in smart phone systems is steadily increasing. According to
a research group, tens of applications are running
concurrently on today’s smart phones [2].

As the degree of multitasking in a smart phone increases,
so does the importance of maintaining the security and
stability of third-party applications. For example, if the
system is poorly protected, even a single malicious or
improperly designed application may crash the whole
system or steal sensitive information from other
applications. Therefore, smart phone operating systems
(OSs) require an execution architecture that is able to
sandbox and control the behavior of third-party applications.

By confining the activities of Java applications in their
virtual machines, the JVM architecture fundamentally
prevents applications from directly accessing to the system
components [3]. Thus, smartphones that may run uncertified
third-party applications can protect the system from unstable

or malicious third-party applications by employing the JVM
architecture.

1 This research was supported by Basic Science Research Program

(2012R1A1A2A10038823) through the National Research Foundation of
Korea (NRF), and also by the IT R&D Program (10041244, Smart TV 2.0
Software Platform) through KEIT funded by the Ministry of Science, ICT
and Future Planning.

Therefore, several commercially successful smartphone
operating systems including Google's Android, Nokia's
Symbian, RIM's BlackBerry OS and Maemo currently
employ the JVM or a derivative structure, and the use of
JVM or other similar VM architectures is expected to
increase in future smartphone operating systems.

Many smartphone applications such as games, media
players and web browsers are interactive or involve
multimedia. These applications are soft real-time tasks, of
which scheduling latency directly impacts user experience
and satisfaction. Therefore, smart phone OSs must fulfill the
timeliness requirements of applications as well as protecting
their security.

Most embedded OS kernels offer real-time schedulers of
one kind or another in order to conform to timeliness
requirements [4-7]. The real-time schedulers conduct
scheduling decisions based on information about the
timeliness requirements of applications, which are provided
by applications to the kernel through system calls. However,
because the JVM layer prohibits applications from directly
accessing kernel interfaces, applications running inside
JVMs cannot deliver their timeliness requirements to the
kernel. Consequently, they cannot benefit from the real-time
schedulers of embedded OS kernels [8].

This paper presents a modified kernel scheduler scheme
that improves the responsiveness of applications running
inside JVMs under heavy system load. Our approach
instructs the scheduler to weight applications' priorities more
heavily than the conventional schedulers so that it prioritizes
responsiveness rather than fairness in scheduling decisions.
Although this approach requires no modification or
rebuilding of existing applications, however, it does not
fully utilize the existing real-time scheduling features of
modern embedded OSs.

Thus, for applications that require rigorous real-time
characteristics and can be modified at the source code level,
this paper also proposes a set of cross-layer real-time
support application programming interfaces (APIs) [9]. This
API set, which is implemented as a Java API library,
delivers the scheduling requirements of applications to the
kernel scheduler via JVMs, thereby allowing the kernel
scheduler to provide real-time scheduling services to
applications.

We implement the prototypes of the suggested schemes
by modifying Google Android. In addition, we port the
prototype implementations to an off-the-shelf smart phone

 3

Digital Object Identifier 10.4316/AECE.2013.03001

1582-7445 © 2013 AECE

[Downloaded from www.aece.ro on Thursday, December 19, 2013 at 04:34:02 (UTC) by 115.145.179.186. Redistribution subject to AECE license or copyright. Online distribution is expressly prohibited.]

Advances in Electrical and Computer Engineering Volume 13, Number 3, 2013

device for evaluation. We evaluate the suggested schemes in
terms of scheduling latency as well as system throughput
with both real application and benchmark workloads.

The remainder of this paper is organized as follows. The
background and related work are introduced in Section II. In
Section III, we propose the real-time support schemes. We
evaluate the prototype implementations of our schemes in
Section IV. Finally, Section V concludes our research and
discusses directions for future research.

II. BACKGROUND AND RELATED WORK

A. JVM-based Smart Phone OSs

JVM-based smart phone OSs execute third-party Java
applications through JVMs in order to obtain security and
hardware independence. This architecture was long used on
feature phones fitting the Mobile Information Device Profile
(MIDP) before the smart phone era began [10].

In the MIDP, an application is implemented as a MIDlet,
which is similar to a Java applet, and it is executed in a
lightweight JVM. Applications thereby become platform-
independent, running regardless of the underlying hardware.
However, the insufficient hardware performance at that time
significantly limited the use of MIDlets on mobile phones.

Figure 1. Diagram of typical JVM-based smart phone architecture.

The rapid improvement of mobile processor performance

revived the MIDP architecture in smart phones. Figure 1
shows the architecture of a typical JVM-based smart phone
software stack. Many smart phone OSs employ existing
general-purpose embedded OS kernels because of their
powerful features and abundant support tools. The system
framework usually comprises system interface libraries,
system software tools, graphics and multimedia support
libraries and system support daemons, all of which run as
native, not JVM-based, tasks.

Above the kernel and system framework, a JVM runs as a
normal task. On top of the JVM layer, sits the core Java
library layer and the application framework layers,
supporting Java applications that run inside the JVMs. The
application framework and core libraries provide developers
with useful common methods such as GUI manipulation or

networking. Requests related to system services are also
delivered to the system framework or kernel through the
application framework or core libraries.

While the JVM-based smart phone systems have many
desirable features, such as hardware-independent executable
files and system and data protection, they also display
significant weaknesses, especially in response time. The
kernel essentially schedules JVMs as non-real-time tasks,
regardless of the importance of the applications inside the
JVMs. Currently there are no means for applications inside
JVMs to request real-time scheduling to the kernel even
though the kernel equips real-time scheduling features.
When combined with the reduced performance due to the
existence of the additional JVM layer, this drawback may
significantly harm the quality of service (QoS) and in turn
the user experience of applications.

Although the performance overhead due to the JVM layer
has been continually improved using cutting-edge
technologies such as the just-in-time (JIT) compilation,
scheduling latency remains a critical issue. The long
scheduling delay of JVMs can induce slow or unpredictable
response time of Java applications.

The specifications for a real-time JVM and Java APIs
have been suggested so that Java can be used for hard real-
time embedded systems [11]. Also, a JVM with enhanced
thread scheduling schemes has been suggested [12]
Although these approaches guarantee real-time scheduling
or improve scheduling latency, they also require the
underlying OSs to schedule the JVMs on time and to
provide sufficient amount of processor time to them. Since
most smart phone applications do not demand rigorous
timeliness requirements and the hard real-time JVMs are
complicated, currently most smart phones or consumer
electronics are not using hard real-time JVMs. According to
our evaluation, which is introduced in Section IV, an
ordinary JVM reacts sufficiently fast even under extremely
heavy CPU load if it is properly scheduled by the OS-level
real-time scheduler.

B. Real-Time Scheduling Supports

To achieve the short response delay required by smart
phone systems, OSs must limit the scheduling latency of
applications below a certain threshold. Thus, a lot of
research has been directed towards the design and
implementation of preemptible kernels, in which prioritized
applications are scheduled preferentially even to the kernel.

In addition to preemptible scheduling, many research
groups have focused on improving the scheduling latency,
and a few schemes such as priority inheritance mutex lock
[13-14] and interrupt threading [15] are now frequently used
by many embedded systems.

However, the improvement in the response delay
resulting from employing such scheduling schemes also
degraded performance. To remedy this, the adaptive
scheduling scheme [16] was suggested, which uses real-time
scheduling features only when necessary.

Applications for JVM-based smart phone OSs hardly
benefit from these research achievements, since the JVM
layer that lies between applications and the kernel prohibits
applications from directly interacting with the kernel to
deliver their timeliness requirements, which is essential

 4

[Downloaded from www.aece.ro on Thursday, December 19, 2013 at 04:34:02 (UTC) by 115.145.179.186. Redistribution subject to AECE license or copyright. Online distribution is expressly prohibited.]

Advances in Electrical and Computer Engineering Volume 13, Number 3, 2013

information for the kernel to properly schedule applications
according to their timeliness requirements. For satisfactory
user experience, it is especially crucial to schedule game or
multimedia applications through strict real-time schedulers,
which are provided by most embedded OSs.

As a result of this limitation, the current JVM-based smart
phone OSs run applications through normal fair-share
schedulers instead of real-time schedulers. In a fair-share
scheduler, the priorities of tasks are not absolute criteria for
determining the next task to schedule. Therefore, under
heavy load or conditions of high concurrency, the execution
of applications with higher priorities may be delayed in
favor of the execution of applications with lower priorities.
Therefore, even prioritized applications may fail to respond
on time given adverse circumstances.

The background computation load is steadily increasing
due to the background network packet encryption, hash
value computation for memory deduplication, use of
encrypted file systems and so on. In addition, growing
popularity of large-sized multimedia data such as 3D or
hologram media files induces extremely high computation
load generally with low priorities.

Like many other smart phone OSs, Android and its
kernel, which are used in our research, employ a variant of
the fair-share scheduler [17], named Completely Fair
Scheduler (CFS) [18-19]. The general Linux kernel as its
default scheduler employs this scheduler. Thus, it is also
used in OSs for PCs and even for servers. Similar to other
fair-share scheduler variants, it compromises the response
times of prioritized tasks in favor of fair distribution of
processor time. However, considering the characteristics of
smart phone applications, which are mostly interactive and
multimedia-related, priorities of applications in smart phone
systems should be taken more into consideration than
fairness.

To overcome this limitation, the applications running
inside JVMs require certain means to deliver their timeliness
requirements for real-time scheduling to the kernel.
Although such cross-layer optimization approach may harm
the modularity in design and incur hidden dependency
between layers, it is being frequently used for improving
network systems, where the lower layers are unaware of the
information defined in the upper layers like our target
environment, due to its effectiveness.

In the bare-metal virtualization architecture, VMs with
real-time applications schedule their application tasks with
the real-time schedulers. However, VM schedulers that run
inside the hypervisor are not aware of the existence of the
real-time applications inside VM. Therefore, some
researchers proposed scheduling schemes that inform the
timeliness requirements of the real-time applications inside a
VM to the hypervisor and schedule the VM with real-time
VM schedulers [20-21].

III. PROPOSED CROSS LAYER FRAMEWORK

A. Intensified Priority Scheduling

Because the current JVMs do not offer programming
interfaces to manipulate the kernel-level scheduling policy,
the priorities of applications are translated into normal-level
priorities only for the CFS, not for the real-time scheduler.

For an existing application to utilize the real-time scheduler,
the application must be modified beforehand to notify the
underlying layers of its intention to have real-time priority.
Therefore, to improve the responsiveness of existing
applications without modifying or rebuilding them, we have
to revise the CFS.

As explained in Section II.B, the scheduler in a smart
phone OS must emphasize task priorities over fairness in
making scheduling decisions. We promote the influence of
task priorities by modifying the existing kernel. This
approach will improve the responsiveness of higher-priority
tasks at the expense of some degree of fairness.

The fundamental algorithm of the CFS is as follows. The
CFS periodically allocates time slices to tasks according to
their priorities. The higher the priority of a task, the more
time slices it receives. The time slices of a task are deducted
proportionally to the execution time of the task. Basically,
when choosing the next task to schedule, the CFS selects the
task with the largest number of remaining time slices. When
every task has used up its allotted time slices, or when a
predefined length of time has passed, the CFS again
allocates time slices to tasks. By repeating these steps again
and again, the CFS respects tasks’ priorities while
maintaining fairness of processor time among them.

The base or static priority of a task in the Linux kernel is
an integer number between 0 to 139. The priority number
from 0 to 99 are reserved for real-time class tasks. Tasks
with the priority values between 100 and 139 are scheduled
by the CFS. The priority value in this range is one-to-one
mapped to the nice value, which ranges -20 to 19. For
example, if the nice value of a task is set to -19, the priority
of the task will be changed to 101. By default, a normal task
has a priority value of 120, which corresponds to a nice
value of 0. The dynamic priority, which is actually used for
scheduling basis by the CFS, is determined based on this
static priority. The CFS temporarily promotes the dynamic
priority of a task when the task sleeps for significantly long
time to boost the performance of interactive or I/O bound
tasks.

Figure 2. A red-black tree is used in the CFS to determine the next task to
schedule.

The CFS uses a red-black tree data structure [22], as

shown in Figure 2, to enable fast retrieval. Each node in the
tree denotes a task, and the key value of each node holds the
amount of virtual runtime belonging to the corresponding
task.

The virtual runtime of a task increases proportionally to
the cumulative execution time of the task. In addition, the

 5

[Downloaded from www.aece.ro on Thursday, December 19, 2013 at 04:34:02 (UTC) by 115.145.179.186. Redistribution subject to AECE license or copyright. Online distribution is expressly prohibited.]

Advances in Electrical and Computer Engineering Volume 13, Number 3, 2013

priority of the task affects the speed of the increment in
virtual runtime. The value increases 10% faster with an
increase in priority value by 1. For example, if the priority
of a task is 120 and it was executed for 1 s, the virtual
runtime of the task would be increased by 1. If the priority
of a task was 121, demoted from the default priority value,
and it executed for 1 s, the virtual runtime of the task would
be increased by 1.1.

The leftmost leaf of a red-black tree always has the
smallest key value. Therefore, the leftmost leaf represents
the task for which cumulative execution time is the shortest
among all tasks. At the end of every time slice, which is the
unit time of task execution, the CFS compares the virtual
runtime of the current task with that of the leftmost leaf of
the tree. It conducts a context switch from the current task to
that of the leftmost leaf when the difference between the
virtual runtime values becomes larger than the length of a
time slice. For example, if the virtual runtime of the
currently executed task were updated to 30 after a time slice
of 7 s, and if the virtual runtime of the leftmost leaf were 22,
the CFS would conduct a context switch to the task in the
leftmost leaf because the difference between their virtual
runtimes, 8, would be greater than the time-slice length of 7
s. After the context switch, the leftmost leaf task will be
popped out of the tree and the current task will be pushed up
to the tree.

This scheduling policy generates frequent context
switches. However, fairness among tasks is accurately
controlled. Also, since the virtual runtimes of lower-priority
tasks increase faster than those of higher-priority tasks,
higher-priority tasks are supposedly scheduled more
frequently and preferentially.

If the speed at which the virtual runtimes are increased is
cut by half, the number of context switches, in accordance
with intuition, will also be reduced by half. As a result,
fairness will be slightly reduced, while priority will have
greater influence on scheduling.

Based on this observation, we propose a modified CFS

(MCFS) that intensifies the influence of task priorities. By
adjusting the speed at which virtual runtimes increase, we
defer context switching and favor higher-priority tasks more
than does the CFS. The MCFS is easy to apply to any
system using the CFS, and all applications will benefit
without requiring any modifications or rebuilding.

Figure 3 shows the procedures for virtual runtime update
operations in the (A) CFS and (B) MCFS. The CFS manages
two values, the cumulative executed time and the virtual
runtime. At every time slice, the scheduler calculates the
delta value and the delta_fair value. The delta value is the
actual amount of elapsed time, and the delta_fair value is the
amount by which the virtual runtime is incremented, cut by
a predefined rate. The cut-rate is defined system-wide; all
tasks share a single cut-rate value. The delta value is added
to the variable for cumulative executed time, and the
delta_fair value is added to the virtual runtime of the task.

If we decrease the cut-rate, fairness will be increased
accordingly. On the other hand, if we increase the cut-rate,
fairness will be diminished and priority will have more
influence. In addition, a high cut-rate will boost up the
throughput of the whole system by reducing the number of
context switches. For example, in Figure 3, the virtual
runtime increases as fast as one-fourth of that under the CFS
when the cut-rate of MCFS is four. Assume that the smallest
virtual runtime in the run-queue is 66. The current task will
keep running in the next time slice under the MCFS while it
will be preempted and the next task in the runqueue will be
scheduled under the CFS.

When the cut-rate is excessively high, high-priority
processes behave like real-time class processes. Under this
circumstance, high-priority processes can monopolize CPU
resource and starve low-priority processes. The applications
that are supposed to run as real-time processes were usually
designed to avoid the CPU monopoly in one way or another.

Figure 3. In the MCFS, decreasing the factor of delta_fair slows the increment of virtual runtimes.

 6

[Downloaded from www.aece.ro on Thursday, December 19, 2013 at 04:34:02 (UTC) by 115.145.179.186. Redistribution subject to AECE license or copyright. Online distribution is expressly prohibited.]

Advances in Electrical and Computer Engineering Volume 13, Number 3, 2013

In addition, the users are aware of the risk when they
promote the priority of the processes to the real-time class.
However, users cannot expect and anticipate the sudden
system freeze or sluggish response from critically unfair
scheduling under the MCFS with an excessively high cut-
rate. Therefore, the cut-rate should be chosen carefully
considering the trade-off between responsiveness of
prioritized applications and fairness of scheduling.

B. Cross-Layer Real-Time Support APIs

Running JVMs through the real-time scheduler is the
fundamental solution to applications’ timely responses
[11],[23]. However, the Dalvik JVM of Android and many
other JVMs running inside smart phones prioritize
applications only with the nice values or priority values of
non-real-time normal schedulers.

The Java run-time framework categorizes application
tasks into two groups: foreground tasks and background
tasks.

Foreground tasks are applications that are being shown on
the display, or that have high priorities explicitly set by
users or developers. The JVMs for foreground tasks are
placed in the Normal queue, in which normal system tasks
are also placed. In order to obtain fast response times given
the many competing tasks, applications change their priority
values through the application framework.

Applications that are not shown on the display are
categorized as background tasks. Foreground tasks are also
recategorized as background tasks when they leave the
screen. Background tasks are placed in the Batch queue.
Both the Normal Batch queues are provided and managed
by the CFS.

Tasks in the Normal queue are scheduled preferentially to
tasks in the Batch queue. Therefore, multimedia or
interactive applications, which are usually displayed on the
screen, tend to have short scheduling latency by virtue of
being scheduled before any background tasks.

However, despite this approach, the scheduling delays of
foreground tasks increase proportionally to those of
competing tasks in the Normal queue when there are
extremely many concurrent tasks or when some tasks are
heavily using processor resources. Under heavy load, even a
task's high priority does not guarantee sufficiently short
scheduling delay.

We resolve this issue by proposing a cross-layer real-time
support framework. By providing Java API methods, the
proposed framework enables applications inside JVMs to
place their JVMs in the real-time scheduling queue so that
their JVMs run as real-time tasks. Also, applications may
change their JVMs' priority in the real-time queue on the fly
through the API methods.

The proposed framework is designed to be a Java library.
Applications invoke the framework methods like other
methods offered by the Java application framework. As
shown in Figure 4, through the Java methods of the
suggested framework, applications can notify the kernel of
their desired scheduling policies and priorities. When
applications invoke a method of the framework, the
framework calls the corresponding system call through the
Java native interface (JNI).

In many cases, applications rely on other applications or

on system services [24]. For example, a music player
depend on the media server, which is a system service
provided by the system framework, for decoding music files
and playing them. In such cases, prioritizing an application
alone cannot guarantee the quality of music services.
Therefore, the framework should prioritize both applications
and their dependent services at once. However, it is difficult
to identify these dependency relationships among
applications and services. Therefore, our scheme requires
applications to notify the kernel explicitly of their dependent
services or applications.

Tasks in the real-time class are scheduled purely based on
their priorities. Therefore, it is possible for a malicious or
malfunctioning task in the real-time class to crash or freeze
the entire system by monopolizing the processor resource. In
addition, if many JVMs claim that they want real-time
priority at the same time, the effectiveness of the real-time
scheduling will significantly diminish.

Therefore, in a production system, the cross-layer real-
time support framework should require user approval for
any scheduling policy or priority changes of an application
through GUI during application runtime or through the
privilege configuration schemes such the Android privilege
manifest during application installation.

Figure 4. The proposed real-time support framework passes the timeliness
requirements of applications directly to the kernel-level scheduler.

IV. EVALUATION

As mentioned, the prototype of the suggested schemes
was implemented in Android OS. Android employs the
Linux kernel as its kernel, like many other current
smartphone OSs. The Linux kernel, by default, uses the CFS
as its scheduler. The implemented prototype was ported to
an off-the-shelf smart phone device, Google Nexus One,
which is built for the Android OS. The Android and Linux
kernel versions for the prototype implementation were 2.2.1
and 2.6.35, respectively.

In our evaluation, an open-source benchmark tool,
Hackbench, was used to put the system under load as done
in the previous research [16]. Besides Hackbench tasks, we
executed a music player and a hypothetical periodic alarm
program as the evaluative programs. The QoS of the music
player and alarm program were monitored and analyzed in
our evaluation.

Hackbench creates a process group, which usually

 7

[Downloaded from www.aece.ro on Thursday, December 19, 2013 at 04:34:02 (UTC) by 115.145.179.186. Redistribution subject to AECE license or copyright. Online distribution is expressly prohibited.]

Advances in Electrical and Computer Engineering Volume 13, Number 3, 2013

consists of 40 independent chatting processes. The processes
in a process group simulate a chatting service by sending
and receiving messages to each other. A process group
terminates itself after a predefined number of messages. To
maintain the system load, we kept Hackbench processes
repeating throughout the experiments.

The load on the system can be minutely controlled
through the number of concurrently running process groups.
Although a larger number of process groups lead to higher
system load, the relationship between the system load and
the number of concurrent process groups is non-linear. This
property has to be considered when analyzing experimental
results.

First, we measured the scheduling delay of the alarm
program. This application creates a thread that enters the
sleep state for 100ms and then wakes up. This sleep and
wake cycle repeats continually. After each sleep, the
application prints out the current time on the screen. By
calculating the interval between time stamps, we can
measure how long the scheduler delayed the thread’s
execution from its scheduled wake time. Without any
workload, which means zero Hackbench process groups on
the system, the scheduling delay of the alarm clock
application did not exceed 3ms in any case.

When many tasks are competing for the processor, the
scheduling of the alarm clock task may be deferred in favor
of the other tasks. We ran the alarm clock application with
different numbers of Hackbench process groups under the
CFS, MCFS, and CFS with the real-time support
framework, respectively. The priority of the alarm clock
program was set to the highest priority, priority value 0,
under both CFS and MCFS and to real-time priority under
the real-time support framework. The Hackbench tasks were
set to be scheduled under CFS with the nice value of 10,
which is the default configuration for background processes
in the Android framework.

Figure 5. Maximum delayed scheduling time of the alarm clock task under
different scheduling schemes while varying the number of Hackbench
groups.

Given the same load, the scheduling delay of the alarm
clock task varies greatly depending on the scheduler.
Because the user experience is determined by the maximum
rather than the average delay, we measured the maximum
scheduling delay given different system loads as shown in
Figure 5.

 The CFS generated scheduling delay even with only a
single Hackbench process group, while the MCFS generates

noticeable delay when over five Hackbench process groups
are running concurrently. With the CFS, the scheduling
delay leapt up to 600ms when 10 Hackbench process groups
were running. 600 ms is significantly long, a delay that
humans can easily perceive. After five Hackbench process
groups were running concurrently, the increase of the
scheduling delay for each additional Hackbench process
group under the MCFS became similar to that under the
CFS. However, even with 10 concurrent Hackbench process
groups, the scheduling delay under the MCFS was only half
that of the CFS.

While the exact value of the perception threshold is
dependent on the user and the type of task being
accomplished, a value of 50ms is commonly used [25].
Thus, under the CFS, users would recognize jitters and
delays from applications even when there is background
workload as heavy as only a single hackbench group. The
same amount of jitters or delays will be experienced under
the MCFS when there is computational load as much as six
hackbench groups, which is a rare situation in mobile
devices.

The scheduling delay with the real-time support
framework remained below 10ms. The alarm task was
scheduled right after it woke up.

The cut-rate of the MCFS used in our experiments was
empirically determined to be 16. In order to investigate the
effects from the cut-rate value, we conducted the same
experiments with different cut-rates. In these experiments,
we increased the cut-rate by doubling it. If the cut-rate is
chosen to be a power of two, applying the cut-rate can be
implemented with a shift instruction instead of
multiplication and thus the computation overhead can be
saved.

Figure 6. Maximum delayed scheduling time of the alarm clock task under
MCFS with different cut-rates while varying the number of Hackbench
groups.

Figure 6 shows the experiment results. As easily
expected, the scheduling latency decreased as the cut-rate
rose. However, in comparison to that under the CFS, the
scheduling latency differed notably only when the cut-rate
was higher than 8. This means that the degree of the fairness
degradation due to the improved scheduling latency under
MCFS is substantial. Especially, when the cut-rate was 32,
the alarm clock process was scheduled like a real-time
process. This means that even little difference in priority
enables CPU monopoly by a process. Consequently, the
responsiveness of other processes as well as the stability of

 8

[Downloaded from www.aece.ro on Thursday, December 19, 2013 at 04:34:02 (UTC) by 115.145.179.186. Redistribution subject to AECE license or copyright. Online distribution is expressly prohibited.]

Advances in Electrical and Computer Engineering Volume 13, Number 3, 2013

the whole system can be harmed critically. Considering this,
the cut-rate should be chosen carefully based on the
expected maximum load and required response time of the
prioritized applications.

Next, we evaluated the proposed schemes with a
multimedia player. The experiment’s configurations were
similar to the previous experiment. We ran multiple
numbers of Hackbench process groups together with the
music player and measured the QoS of the music player.
The priority of the music player was set to the highest
priority under both CFS and MCFS and to real-time priority
under the real-time support framework, while that of the
Hackbench tasks was set to normal.

Under the CFS, the perceptive QoS of the music player
got worse with larger number of Hackbench process groups
running on the system. The experimenters easily recognized
frequent jitters and suspension of music playback under
heavy load. Also, the music took significantly longer to
play.

Figure 7. Delayed playback time of music player given a varying number of
Hackbench process groups.

Figure 7 shows the prolonged playback time of the same
music file, originally 3min 59s long, given a varying number
of concurrent Hackbench process groups and under different
scheduling schemes. If the music play is prolonged by 30s,
the total music playtime will become 4min 30s.

Under the CFS, music playback was noticeably prolonged
with only three Hackbench process groups running
concurrently. The prolongation increased linearly with an
increase in the number of Hackbench process groups,
increasing up to 30 s with 15 concurrent Hackbench process
groups.

Under the MCFS, significant prolongation of playback
occurred only when there were more than seven
concurrently running Hackbench process groups. Also, in
the worst case, the prolongation of playback was only two-
thirds of that under the CFS. We could not find any
noticeable or perceived delay, jitters, or suspension of
playback under the real-time support framework.

We further investigated the QoS of the music player by
examining its decoding and buffer-writing activity. The
music player periodically decodes a block of a music file
and writes the decoded data to the sound buffer. When there
is long delay in decoding of a single block, the quality of
music playback may not degrade if there is remaining
decoded data in the buffer. When the buffer is emptied

before replenishment as a result of delayed decoding, jitters
or suspension of music play occur. Thus, the single block
writing delay is not an appropriate metric to judge the
quality of service. Although the cumulative buffer writing
delay is not a direct measure of the music playback quality
either, we found that it reflects the quality of music playback
more accurately than the writing delay of a single block.

Normally, the decoding and buffer-writing activity takes
15ms to 20ms under the CFS when there are no other active
tasks. Thus, we defined the buffer-writing delay as the
difference between the elapsed decoding and buffer-writing
time and 20ms. For example, when decoding and buffer-
writing a block takes 100ms, the buffer-writing delay of this
block is 80ms.

Figure 8. Cumulative buffer-writing delay of the music player given a
varying number of Hackbench process groups.

Figure 8 shows the cumulative buffer writing delay
during the music playback under the CFS, MCFS, and with
the real-time support framework.

Under the CFS, buffer-writing delay occurs even with
only one group of Hackbench processes running. This
tendency is similar to that shown in the experiments with the
alarm clock task. The buffer-writing delay increased steadily
with increasing numbers of Hackbench process groups until
reaching 40,000ms.

The MCFS significantly suppressed buffer-writing delay.
The delay did not exceed 28,000ms in the worst case,
approximately 30% better than the CFS. Also, noticeable
delay occurred only beyond four concurrent Hackbench
groups. With the real-time support framework, as expected,
no significant buffer-writing delay occurred.

When there are a small number of Hackbench tasks, the
scheduling delays of a prioritized task are usually short and
frequent. On the contrary, when there are a large number of
Hackbench tasks, the scheduling delays of a prioritized task
are generally long and infrequent.

This tendency is illustrated by the differences between the
slope patterns of Figure 7 and Figure 8. Even when buffer-
writing delays occur, the music may play without noticeable
QoS degradation if the delays are sufficiently short that they
do not empty the buffer. Although there are a lot of buffer-
writing delays with a small number of Hackbench process
groups under the CFS, as Figure 8, these delays did not lead
to jitters or suspension of music playback, as shown in
Figure 7.

In order to analyze the performance overhead of the

 9

[Downloaded from www.aece.ro on Thursday, December 19, 2013 at 04:34:02 (UTC) by 115.145.179.186. Redistribution subject to AECE license or copyright. Online distribution is expressly prohibited.]

Advances in Electrical and Computer Engineering Volume 13, Number 3, 2013

 10

proposed schemes, we measured the average completion
time of the Hackbench tasks during the music player
experiments. Figure 9 shows the average execution time
normalized to the results under the CFS.

REFERENCES

[1] L. Ravindranath, J. Padhye, S. Agarwal, R. Mahajan, I. Obermiller,

and S. Shayandeh, "AppInsight: Mobile App Performance Monitoring
in the Wild," presented at the Proceedings of the 10th USENIX
Symposium on Operating Systems Design and Implementation, 2012.

[2] N. Vallina-Rodriguez, P. Hui, J. Crowcroft, and A. Rice, "Exhausting
battery statistics: understanding the energy demands on mobile
handsets," presented at the Proceedings of the second ACM
SIGCOMM workshop on Networking, systems, and applications on
mobile handhelds, 1851327, 2010.

[3] Y.-H. Lee, P. Chandrian, and B. Li, "Efficient Java Native Interface
for Android Based Mobile Devices," presented at the Proceedings of
the 10th International Conference on Trust, Security and Privacy in
Computing and Communications, 2011.

[4] J. J. Labrosse, MicroC/OS-II : the real-time kernel, 2 ed., CMP
Books, 2002.

[5] J. A. Stankovic and R. Rajkumar, "Real-Time Operating Systems,"
Real-Time Systems, vol. 28, pp. 237-253, 2004.

[6] S. Oikawa and R. Rajkumar, "Portable RK : a portable resource
kernel for guaranteed and enforced timing behavior," presented at the
Proceedings of the IEEE Real-Time Technology and Applications
Symposium, 1999.

[7] J. Ready, "VRTX : a real-time operating sytems for embedded
microprocessor applications," IEEE Micro, vol. 6, pp. 8-17, 1986. Figure 9. Normalized execution time of Hackbench benchmark with a

concurrently running music player under different scheduling schemes. [8] C. Maia, L. Nogueria, and L. M. Pinbo, "Evaluating Android OS for
Embedded Real-Time Systems," presented at the Proceedings of the
6th International Workshop on Operating Systems Platforms for
Embedded Real-Time Applications, pp. 63-70, 2010.

The performance under the MCFS was better than that

under the CFS because the MCFS suppress context
switches. The real-time support framework also reduces the
number of context switches given small numbers of
Hackbench process groups by scheduling the music player
preferentially to other tasks. With the large numbers of
Hackbench process groups, Hackbench performance
degraded slightly under the real-time framework because a
relatively large portion of processor time was being devoted
to the music player in comparison to the other two schemes.

[9] Y. Woo, J. Cho, D. Lim , and E. Seo, "Cross-layer real-time support
for JVM-based smartphone systems," presented at the Proceedings of
the 2012 IEEE International Conference on Consumer Electronics, pp.
592-593, 2012.

[10] J. W. Muchow, Core J2ME Technology and MIDP, first ed., Prentice
Hall PTR, 2001.

[11] G. Bollella and J. Gosling, "The real-time specification for Java,"
Computer, vol. 33, pp. 47-54, 2000.

[12] J. C. Pang, G. C. Shoja, and E. G. Manning, "Providing soft real-time
quality of service guarantees for Java threads," Concurrency and
Computation: Practice and Experience, vol. 15, pp. 521--538, 2003.

[13] L. Sha, R. Rajkumar, and J. P. Lehoczky, "Priority Inheritance
Protocols: An Approach to Real-Time Synchronization," IEEE
Transactions on Computers, vol. 39, pp. 1175-1185, 1990.

However, in all cases, the proposed schemes reduced
performance by less than 2% in comparison to the CFS.

[14] W. v. Hagen, "Real-time and performance improvements in the 2.6
Linux kernel," Linux Journal, vol. 2005, 2005. V. CONCLUSION

Despite many benefits, the JVM architecture has a
significant weakness: applications inside JVMs cannot fully
utilize the kernel-level real-time support because the JVM
layer hinders applications from informing the kernel of their
timeliness requirements.

Our research improves the responsiveness of JVM-based
smart phone applications by modifying the conventional
scheduler so that it places a higher value on task priorities
than on fairness. In addition to this, we proposed a cross-
layer real-time support Java API library that delivers the
timeliness requirements of applications to the kernel
scheduler.

The evaluation showed that the modified kernel scheduler
significantly reduced the response latency without requiring
modification or rebuilding of existing applications. In
addition, when applications were modified to use the
proposed cross-layer real-time support framework, the
scheduling latency of those applications was limited to few
milliseconds even under heavy load.

However, the proposed schemes still cannot always
provide real-time responsiveness because it does not
automatically detect scheduling dependency relationships
among applications and services, and, in addition, some
system-related threads cannot be prioritized to the real-time
class. We are conducting research to address these issues.

[15] S. Kleiman and J. Eykholt, "Interrupts as threads," ACM SIGOPS
Operating Systems Review, vol. 29, pp. 21-26, 1995.

[16] E. Seo, J. Jeong, S. Park, J. Kim, and J. Lee, "Catching two rabbits:
adaptive real-time support for embedded Linux," Software: Practice
and Experience, vol. 39, pp. 531-550, 2009.

[17] J. Kay and P. Lauder, "A fair share scheduler," Communnications of
the ACM, vol. 31, pp. 44--55, January 1988.

[18] C. S. Pabla, "Completely fair scheduler," Linux Journal, vol. 2009,
2009.

[19] D. Bovet and M. Cesati, Understanding the Linux Kernel, third ed.,
O'Reilly Media, 2000.

[20] S. Xi, J. Wilson, C. Lu, and C. Gill, "RT-Xen: Towards real-time
hypervisor scheduling in Xen," presented at the Proceedings of the
International Conference on Embedded Software, pp.39-48, 2011.

[21] M. Lee, A. S. Krishnakumar, P. Krishnan, N. Singh, and S. Yajnik,
"Supporting soft real-time tasks in the Xen hypervisor," presented at
the Proceedings of the 6th ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environment, pp. 97-108, 2010.

[22] L. J. Guibas and R. Sedgewick, "A dichromatic framework for
balanced trees," presented at the Proceedings of IEEE Annual
Symposium on Foundations of Computer Science, Los Alamitos, CA,
USA, 1978.

[23] J. Auerbach, D. F. Bacon, B. Blainey, P. Cheng, M. Dawson, M.
Fulton, D. Grove, D. Hart, and M. Stoodley, "Design and
implementation of a comprehensive real-time Java virtual machine,"
presented at the Proceedings of the 7th ACM and IEEE international
conference on Embedded software, 1289967, 2007.

[24] C.-t. Man, P. Li, and Y. Li, "Study of Priority Inversion in Embedded
Linux," presented at the Proceedings of the 1st International
Conference on Innovative Computing, Information and Control, 2006.

[25] S. K. Card, T. P. Moran, and A. Newell, The Psychology of Human-
Computer Interaction, Lawrence Erlbaum Associates, 1983.

[Downloaded from www.aece.ro on Thursday, December 19, 2013 at 04:34:02 (UTC) by 115.145.179.186. Redistribution subject to AECE license or copyright. Online distribution is expressly prohibited.]

