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1 Abstract—Employing the Java virtual machine (JVM) 

architecture provides smart phone systems stability and 
security by sandboxing third-party applications and 
controlling their behavior. However, the JVM layer hinders 
applications from notifying the operating system scheduler 
about their timeliness requirements; therefore, applications 
sometimes fail to respond on time. In order to improve the 
responsiveness of smart phone applications, this paper 
proposes two schemes. First, for existing applications that 
cannot be rebuilt, we modify the kernel scheduler to value task 
priorities over fairness. Second, we propose cross-layer real-
time support APIs to deliver applications' priorities to the 
kernel scheduler, which will help developers to add real-time 
scheduling support to their applications. Our prototype 
demonstrates that the suggested schemes dramatically improve 
response times and throughputs of prioritized applications. 
 

Index Terms—real-time schedulers, scheduling algorithm, 
smart phones, Java, virtual machines. 

I. INTRODUCTION 

The third-party smartphone app market is dramatically 
expanding. Currently, there are over a million mobile apps 
in various app marketplaces. Users rely on these apps for a 
variety of tasks, from posting mildly amusing comments on 
social network services to online banking [1]. 

Thus, most modern smart phone systems are equipped 
with multitasking capability, and the degree of concurrency 
in smart phone systems is steadily increasing. According to 
a research group, tens of applications are running 
concurrently on today’s smart phones [2]. 

As the degree of multitasking in a smart phone increases, 
so does the importance of maintaining the security and 
stability of third-party applications. For example, if the 
system is poorly protected, even a single malicious or 
improperly designed application may crash the whole 
system or steal sensitive information from other 
applications. Therefore, smart phone operating systems 
(OSs) require an execution architecture that is able to 
sandbox and control the behavior of third-party applications. 

By confining the activities of Java applications in their 
virtual machines, the JVM architecture fundamentally 
prevents applications from directly accessing to the system 
components [3]. Thus, smartphones that may run uncertified 
third-party applications can protect the system from unstable 

or malicious third-party applications by employing the JVM 
architecture. 
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Therefore, several commercially successful smartphone 
operating systems including Google's Android, Nokia's 
Symbian, RIM's BlackBerry OS and Maemo currently 
employ the JVM or a derivative structure, and the use of 
JVM or other similar VM architectures is expected to 
increase in future smartphone operating systems. 

Many smartphone applications such as games, media 
players and web browsers are interactive or involve 
multimedia. These applications are soft real-time tasks, of 
which scheduling latency directly impacts user experience 
and satisfaction. Therefore, smart phone OSs must fulfill the 
timeliness requirements of applications as well as protecting 
their security. 

Most embedded OS kernels offer real-time schedulers of 
one kind or another in order to conform to timeliness 
requirements [4-7]. The real-time schedulers conduct 
scheduling decisions based on information about the 
timeliness requirements of applications, which are provided 
by applications to the kernel through system calls. However, 
because the JVM layer prohibits applications from directly 
accessing kernel interfaces, applications running inside 
JVMs cannot deliver their timeliness requirements to the 
kernel. Consequently, they cannot benefit from the real-time 
schedulers of embedded OS kernels [8].  

This paper presents a modified kernel scheduler scheme 
that improves the responsiveness of applications running 
inside JVMs under heavy system load. Our approach 
instructs the scheduler to weight applications' priorities more 
heavily than the conventional schedulers so that it prioritizes 
responsiveness rather than fairness in scheduling decisions. 
Although this approach requires no modification or 
rebuilding of existing applications, however, it does not 
fully utilize the existing real-time scheduling features of 
modern embedded OSs. 

Thus, for applications that require rigorous real-time 
characteristics and can be modified at the source code level, 
this paper also proposes a set of cross-layer real-time 
support application programming interfaces (APIs) [9]. This 
API set, which is implemented as a Java API library, 
delivers the scheduling requirements of applications to the 
kernel scheduler via JVMs, thereby allowing the kernel 
scheduler to provide real-time scheduling services to 
applications. 

We implement the prototypes of the suggested schemes 
by modifying Google Android. In addition, we port the 
prototype implementations to an off-the-shelf smart phone 
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device for evaluation. We evaluate the suggested schemes in 
terms of scheduling latency as well as system throughput 
with both real application and benchmark workloads. 

The remainder of this paper is organized as follows. The 
background and related work are introduced in Section II. In 
Section III, we propose the real-time support schemes. We 
evaluate the prototype implementations of our schemes in 
Section IV. Finally, Section V concludes our research and 
discusses directions for future research. 

II. BACKGROUND AND RELATED WORK 

A. JVM-based Smart Phone OSs 

JVM-based smart phone OSs execute third-party Java 
applications through JVMs in order to obtain security and 
hardware independence. This architecture was long used on 
feature phones fitting the Mobile Information Device Profile 
(MIDP) before the smart phone era began [10]. 

In the MIDP, an application is implemented as a MIDlet, 
which is similar to a Java applet, and it is executed in a 
lightweight JVM. Applications thereby become platform-
independent, running regardless of the underlying hardware. 
However, the insufficient hardware performance at that time 
significantly limited the use of MIDlets on mobile phones. 

 

 
Figure 1. Diagram of typical JVM-based smart phone architecture. 

 
The rapid improvement of mobile processor performance 

revived the MIDP architecture in smart phones. Figure 1 
shows the architecture of a typical JVM-based smart phone 
software stack. Many smart phone OSs employ existing 
general-purpose embedded OS kernels because of their 
powerful features and abundant support tools. The system 
framework usually comprises system interface libraries, 
system software tools, graphics and multimedia support 
libraries and system support daemons, all of which run as 
native, not JVM-based, tasks. 

Above the kernel and system framework, a JVM runs as a 
normal task. On top of the JVM layer, sits the core Java 
library layer and the application framework layers, 
supporting Java applications that run inside the JVMs. The 
application framework and core libraries provide developers 
with useful common methods such as GUI manipulation or 

networking. Requests related to system services are also 
delivered to the system framework or kernel through the 
application framework or core libraries. 

While the JVM-based smart phone systems have many 
desirable features, such as hardware-independent executable 
files and system and data protection, they also display 
significant weaknesses, especially in response time. The 
kernel essentially schedules JVMs as non-real-time tasks, 
regardless of the importance of the applications inside the 
JVMs. Currently there are no means for applications inside 
JVMs to request real-time scheduling to the kernel even 
though the kernel equips real-time scheduling features. 
When combined with the reduced performance due to the 
existence of the additional JVM layer, this drawback may 
significantly harm the quality of service (QoS) and in turn 
the user experience of applications.  

Although the performance overhead due to the JVM layer 
has been continually improved using cutting-edge 
technologies such as the just-in-time (JIT) compilation, 
scheduling latency remains a critical issue. The long 
scheduling delay of JVMs can induce slow or unpredictable 
response time of Java applications. 

The specifications for a real-time JVM and Java APIs 
have been suggested so that Java can be used for hard real-
time embedded systems [11]. Also, a JVM with enhanced 
thread scheduling schemes has been suggested [12] 
Although these approaches guarantee real-time scheduling 
or improve scheduling latency, they also require the 
underlying OSs to schedule the JVMs on time and to 
provide sufficient amount of processor time to them. Since 
most smart phone applications do not demand rigorous 
timeliness requirements and the hard real-time JVMs are 
complicated, currently most smart phones or consumer 
electronics are not using hard real-time JVMs. According to 
our evaluation, which is introduced in Section IV, an 
ordinary JVM reacts sufficiently fast even under extremely 
heavy CPU load if it is properly scheduled by the OS-level 
real-time scheduler. 

B. Real-Time Scheduling Supports 

To achieve the short response delay required by smart 
phone systems, OSs must limit the scheduling latency of 
applications below a certain threshold. Thus, a lot of 
research has been directed towards the design and 
implementation of preemptible kernels, in which prioritized 
applications are scheduled preferentially even to the kernel. 

In addition to preemptible scheduling, many research 
groups have focused on improving the scheduling latency, 
and a few schemes such as priority inheritance mutex lock 
[13-14] and interrupt threading [15] are now frequently used 
by many embedded systems.  

However, the improvement in the response delay 
resulting from employing such scheduling schemes also 
degraded performance. To remedy this, the adaptive 
scheduling scheme [16] was suggested, which uses real-time 
scheduling features only when necessary. 

Applications for JVM-based smart phone OSs hardly 
benefit from these research achievements, since the JVM 
layer that lies between applications and the kernel prohibits 
applications from directly interacting with the kernel to 
deliver their timeliness requirements, which is essential 
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information for the kernel to properly schedule applications 
according to their timeliness requirements. For satisfactory 
user experience, it is especially crucial to schedule game or 
multimedia applications through strict real-time schedulers, 
which are provided by most embedded OSs.  

As a result of this limitation, the current JVM-based smart 
phone OSs run applications through normal fair-share 
schedulers instead of real-time schedulers. In a fair-share 
scheduler, the priorities of tasks are not absolute criteria for 
determining the next task to schedule. Therefore, under 
heavy load or conditions of high concurrency, the execution 
of applications with higher priorities may be delayed in 
favor of the execution of applications with lower priorities. 
Therefore, even prioritized applications may fail to respond 
on time given adverse circumstances. 

The background computation load is steadily increasing 
due to the background network packet encryption, hash 
value computation for memory deduplication, use of 
encrypted file systems and so on. In addition, growing 
popularity of large-sized multimedia data such as 3D or 
hologram media files induces extremely high computation 
load generally with low priorities. 

Like many other smart phone OSs, Android and its 
kernel, which are used in our research, employ a variant of 
the fair-share scheduler [17], named Completely Fair 
Scheduler (CFS) [18-19]. The general Linux kernel as its 
default scheduler employs this scheduler. Thus, it is also 
used in OSs for PCs and even for servers. Similar to other 
fair-share scheduler variants, it compromises the response 
times of prioritized tasks in favor of fair distribution of 
processor time. However, considering the characteristics of 
smart phone applications, which are mostly interactive and 
multimedia-related, priorities of applications in smart phone 
systems should be taken more into consideration than 
fairness. 

To overcome this limitation, the applications running 
inside JVMs require certain means to deliver their timeliness 
requirements for real-time scheduling to the kernel. 
Although such cross-layer optimization approach may harm 
the modularity in design and incur hidden dependency 
between layers, it is being frequently used for improving 
network systems, where the lower layers are unaware of the 
information defined in the upper layers like our target 
environment, due to its effectiveness.  

In the bare-metal virtualization architecture, VMs with 
real-time applications schedule their application tasks with 
the real-time schedulers. However, VM schedulers that run 
inside the hypervisor are not aware of the existence of the 
real-time applications inside VM. Therefore, some 
researchers proposed scheduling schemes that inform the 
timeliness requirements of the real-time applications inside a 
VM to the hypervisor and schedule the VM with real-time 
VM schedulers [20-21]. 

III. PROPOSED CROSS LAYER FRAMEWORK 

A. Intensified Priority Scheduling 

Because the current JVMs do not offer programming 
interfaces to manipulate the kernel-level scheduling policy, 
the priorities of applications are translated into normal-level 
priorities only for the CFS, not for the real-time scheduler. 

For an existing application to utilize the real-time scheduler, 
the application must be modified beforehand to notify the 
underlying layers of its intention to have real-time priority. 
Therefore, to improve the responsiveness of existing 
applications without modifying or rebuilding them, we have 
to revise the CFS. 

As explained in Section II.B, the scheduler in a smart 
phone OS must emphasize task priorities over fairness in 
making scheduling decisions. We promote the influence of 
task priorities by modifying the existing kernel. This 
approach will improve the responsiveness of higher-priority 
tasks at the expense of some degree of fairness. 

The fundamental algorithm of the CFS is as follows. The 
CFS periodically allocates time slices to tasks according to 
their priorities. The higher the priority of a task, the more 
time slices it receives. The time slices of a task are deducted 
proportionally to the execution time of the task. Basically, 
when choosing the next task to schedule, the CFS selects the 
task with the largest number of remaining time slices. When 
every task has used up its allotted time slices, or when a 
predefined length of time has passed, the CFS again 
allocates time slices to tasks. By repeating these steps again 
and again, the CFS respects tasks’ priorities while 
maintaining fairness of processor time among them. 

The base or static priority of a task in the Linux kernel is 
an integer number between 0 to 139. The priority number 
from 0 to 99 are reserved for real-time class tasks. Tasks 
with the priority values between 100 and 139 are scheduled 
by the CFS.  The priority value in this range is one-to-one 
mapped to the nice value, which ranges -20 to 19. For 
example, if the nice value of a task is set to -19, the priority 
of the task will be changed to 101. By default, a normal task 
has a priority value of 120, which corresponds to a nice 
value of 0. The dynamic priority, which is actually used for 
scheduling basis by the CFS, is determined based on this 
static priority. The CFS temporarily promotes the dynamic 
priority of a task when the task sleeps for significantly long 
time to boost the performance of interactive or I/O bound 
tasks. 

 
Figure 2. A red-black tree is used in the CFS to determine the next task to 
schedule. 

 
The CFS uses a red-black tree data structure [22], as 

shown in Figure 2, to enable fast retrieval. Each node in the 
tree denotes a task, and the key value of each node holds the 
amount of virtual runtime belonging to the corresponding 
task.  

The virtual runtime of a task increases proportionally to 
the cumulative execution time of the task. In addition, the 
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priority of the task affects the speed of the increment in 
virtual runtime. The value increases 10% faster with an 
increase in priority value by 1. For example, if the priority 
of a task is 120 and it was executed for 1 s, the virtual 
runtime of the task would be increased by 1. If the priority 
of a task was 121, demoted from the default priority value, 
and it executed for 1 s, the virtual runtime of the task would 
be increased by 1.1. 

The leftmost leaf of a red-black tree always has the 
smallest key value. Therefore, the leftmost leaf represents 
the task for which cumulative execution time is the shortest 
among all tasks. At the end of every time slice, which is the 
unit time of task execution, the CFS compares the virtual 
runtime of the current task with that of the leftmost leaf of 
the tree. It conducts a context switch from the current task to 
that of the leftmost leaf when the difference between the 
virtual runtime values becomes larger than the length of a 
time slice. For example, if the virtual runtime of the 
currently executed task were updated to 30 after a time slice 
of 7 s, and if the virtual runtime of the leftmost leaf were 22, 
the CFS would conduct a context switch to the task in the 
leftmost leaf because the difference between their virtual 
runtimes, 8, would be greater than the time-slice length of 7 
s. After the context switch, the leftmost leaf task will be 
popped out of the tree and the current task will be pushed up 
to the tree.  

This scheduling policy generates frequent context 
switches. However, fairness among tasks is accurately 
controlled. Also, since the virtual runtimes of lower-priority 
tasks increase faster than those of higher-priority tasks, 
higher-priority tasks are supposedly scheduled more 
frequently and preferentially.  

If the speed at which the virtual runtimes are increased is 
cut by half, the number of context switches, in accordance 
with intuition, will also be reduced by half. As a result, 
fairness will be slightly reduced, while priority will have 
greater influence on scheduling. 

 
Based on this observation, we propose a modified CFS 

(MCFS) that intensifies the influence of task priorities. By 
adjusting the speed at which virtual runtimes increase, we 
defer context switching and favor higher-priority tasks more 
than does the CFS. The MCFS is easy to apply to any 
system using the CFS, and all applications will benefit 
without requiring any modifications or rebuilding. 

Figure 3 shows the procedures for virtual runtime update 
operations in the (A) CFS and (B) MCFS. The CFS manages 
two values, the cumulative executed time and the virtual 
runtime. At every time slice, the scheduler calculates the 
delta value and the delta_fair value. The delta value is the 
actual amount of elapsed time, and the delta_fair value is the 
amount by which the virtual runtime is incremented, cut by 
a predefined rate. The cut-rate is defined system-wide; all 
tasks share a single cut-rate value. The delta value is added 
to the variable for cumulative executed time, and the 
delta_fair value is added to the virtual runtime of the task. 

If we decrease the cut-rate, fairness will be increased 
accordingly. On the other hand, if we increase the cut-rate, 
fairness will be diminished and priority will have more 
influence. In addition, a high cut-rate will boost up the 
throughput of the whole system by reducing the number of 
context switches. For example, in Figure 3, the virtual 
runtime increases as fast as one-fourth of that under the CFS 
when the cut-rate of MCFS is four. Assume that the smallest 
virtual runtime in the run-queue is 66. The current task will 
keep running in the next time slice under the MCFS while it 
will be preempted and the next task in the runqueue will be 
scheduled under the CFS. 

When the cut-rate is excessively high, high-priority 
processes behave like real-time class processes. Under this 
circumstance, high-priority processes can monopolize CPU 
resource and starve low-priority processes. The applications 
that are supposed to run as real-time processes were usually 
designed to avoid the CPU monopoly in one way or another.  

Figure 3. In the MCFS, decreasing the factor of delta_fair slows the increment of virtual runtimes. 
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In addition, the users are aware of the risk when they 
promote the priority of the processes to the real-time class. 
However, users cannot expect and anticipate the sudden 
system freeze or sluggish response from critically unfair 
scheduling under the MCFS with an excessively high cut-
rate. Therefore, the cut-rate should be chosen carefully 
considering the trade-off between responsiveness of 
prioritized applications and fairness of scheduling. 

B. Cross-Layer Real-Time Support APIs 

Running JVMs through the real-time scheduler is the 
fundamental solution to applications’ timely responses 
[11],[23]. However, the Dalvik JVM of Android and many 
other JVMs running inside smart phones prioritize 
applications only with the nice values or priority values of 
non-real-time normal schedulers.  

The Java run-time framework categorizes application 
tasks into two groups: foreground tasks and background 
tasks.  

Foreground tasks are applications that are being shown on 
the display, or that have high priorities explicitly set by 
users or developers. The JVMs for foreground tasks are 
placed in the Normal queue, in which normal system tasks 
are also placed. In order to obtain fast response times given 
the many competing tasks, applications change their priority 
values through the application framework. 

Applications that are not shown on the display are 
categorized as background tasks. Foreground tasks are also 
recategorized as background tasks when they leave the 
screen. Background tasks are placed in the Batch queue. 
Both the Normal Batch queues are provided and managed 
by the CFS. 

Tasks in the Normal queue are scheduled preferentially to 
tasks in the Batch queue. Therefore, multimedia or 
interactive applications, which are usually displayed on the 
screen, tend to have short scheduling latency by virtue of 
being scheduled before any background tasks. 

However, despite this approach, the scheduling delays of 
foreground tasks increase proportionally to those of 
competing tasks in the Normal queue when there are 
extremely many concurrent tasks or when some tasks are 
heavily using processor resources. Under heavy load, even a 
task's high priority does not guarantee sufficiently short 
scheduling delay. 

We resolve this issue by proposing a cross-layer real-time 
support framework. By providing Java API methods, the 
proposed framework enables applications inside JVMs to 
place their JVMs in the real-time scheduling queue so that 
their JVMs run as real-time tasks. Also, applications may 
change their JVMs' priority in the real-time queue on the fly 
through the API methods. 

The proposed framework is designed to be a Java library. 
Applications invoke the framework methods like other 
methods offered by the Java application framework. As 
shown in Figure 4, through the Java methods of the 
suggested framework, applications can notify the kernel of 
their desired scheduling policies and priorities. When 
applications invoke a method of the framework, the 
framework calls the corresponding system call through the 
Java native interface (JNI). 

In many cases, applications rely on other applications or 

on system services [24]. For example, a music player 
depend on the media server, which is a system service 
provided by the system framework, for decoding music files 
and playing them. In such cases, prioritizing an application 
alone cannot guarantee the quality of music services. 
Therefore, the framework should prioritize both applications 
and their dependent services at once. However, it is difficult 
to identify these dependency relationships among 
applications and services. Therefore, our scheme requires 
applications to notify the kernel explicitly of their dependent 
services or applications. 

Tasks in the real-time class are scheduled purely based on 
their priorities. Therefore, it is possible for a malicious or 
malfunctioning task in the real-time class to crash or freeze 
the entire system by monopolizing the processor resource. In 
addition, if many JVMs claim that they want real-time 
priority at the same time, the effectiveness of the real-time 
scheduling will significantly diminish. 

Therefore, in a production system, the cross-layer real-
time support framework should require user approval for 
any scheduling policy or priority changes of an application 
through GUI during application runtime or through the 
privilege configuration schemes such the Android privilege 
manifest during application installation. 

 
Figure 4. The proposed real-time support framework passes the timeliness 
requirements of applications directly to the kernel-level scheduler. 

IV. EVALUATION 

As mentioned, the prototype of the suggested schemes 
was implemented in Android OS. Android employs the 
Linux kernel as its kernel, like many other current 
smartphone OSs. The Linux kernel, by default, uses the CFS 
as its scheduler. The implemented prototype was ported to 
an off-the-shelf smart phone device, Google Nexus One, 
which is built for the Android OS. The Android and Linux 
kernel versions for the prototype implementation were 2.2.1 
and 2.6.35, respectively. 

In our evaluation, an open-source benchmark tool, 
Hackbench, was used to put the system under load as done 
in the previous research [16]. Besides Hackbench tasks, we 
executed a music player and a hypothetical periodic alarm 
program as the evaluative programs. The QoS of the music 
player and alarm program were monitored and analyzed in 
our evaluation. 

Hackbench creates a process group, which usually 
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consists of 40 independent chatting processes. The processes 
in a process group simulate a chatting service by sending 
and receiving messages to each other. A process group 
terminates itself after a predefined number of messages. To 
maintain the system load, we kept Hackbench processes 
repeating throughout the experiments. 

The load on the system can be minutely controlled 
through the number of concurrently running process groups. 
Although a larger number of process groups lead to higher 
system load, the relationship between the system load and 
the number of concurrent process groups is non-linear. This 
property has to be considered when analyzing experimental 
results. 

First, we measured the scheduling delay of the alarm 
program. This application creates a thread that enters the 
sleep state for 100ms and then wakes up. This sleep and 
wake cycle repeats continually. After each sleep, the 
application prints out the current time on the screen. By 
calculating the interval between time stamps, we can 
measure how long the scheduler delayed the thread’s 
execution from its scheduled wake time. Without any 
workload, which means zero Hackbench process groups on 
the system, the scheduling delay of the alarm clock 
application did not exceed 3ms in any case. 

When many tasks are competing for the processor, the 
scheduling of the alarm clock task may be deferred in favor 
of the other tasks. We ran the alarm clock application with 
different numbers of Hackbench process groups under the 
CFS, MCFS, and CFS with the real-time support 
framework, respectively. The priority of the alarm clock 
program was set to the highest priority, priority value 0, 
under both CFS and MCFS and to real-time priority under 
the real-time support framework. The Hackbench tasks were 
set to be scheduled under CFS with the nice value of 10, 
which is the default configuration for background processes 
in the Android framework. 

 
Figure 5. Maximum delayed scheduling time of the alarm clock task under 
different scheduling schemes while varying the number of Hackbench 
groups. 
 

Given the same load, the scheduling delay of the alarm 
clock task varies greatly depending on the scheduler. 
Because the user experience is determined by the maximum 
rather than the average delay, we measured the maximum 
scheduling delay given different system loads as shown in 
Figure 5. 

 The CFS generated scheduling delay even with only a 
single Hackbench process group, while the MCFS generates 

noticeable delay when over five Hackbench process groups 
are running concurrently. With the CFS, the scheduling 
delay leapt up to 600ms when 10 Hackbench process groups 
were running. 600 ms is significantly long, a delay that 
humans can easily perceive. After five Hackbench process 
groups were running concurrently, the increase of the 
scheduling delay for each additional Hackbench process 
group under the MCFS became similar to that under the 
CFS. However, even with 10 concurrent Hackbench process 
groups, the scheduling delay under the MCFS was only half 
that of the CFS.  

While the exact value of the perception threshold is 
dependent on the user and the type of task being 
accomplished, a value of 50ms is commonly used [25]. 
Thus, under the CFS, users would recognize jitters and 
delays from applications even when there is background 
workload as heavy as only a single hackbench group. The 
same amount of jitters or delays will be experienced under 
the MCFS when there is computational load as much as six 
hackbench groups, which is a rare situation in mobile 
devices. 

The scheduling delay with the real-time support 
framework remained below 10ms. The alarm task was 
scheduled right after it woke up. 

The cut-rate of the MCFS used in our experiments was 
empirically determined to be 16. In order to investigate the 
effects from the cut-rate value, we conducted the same 
experiments with different cut-rates. In these experiments, 
we increased the cut-rate by doubling it. If the cut-rate is 
chosen to be a power of two, applying the cut-rate can be 
implemented with a shift instruction instead of 
multiplication and thus the computation overhead can be 
saved. 

 
Figure 6. Maximum delayed scheduling time of the alarm clock task under 
MCFS with different cut-rates while varying the number of Hackbench 
groups. 
 

Figure 6 shows the experiment results. As easily 
expected, the scheduling latency decreased as the cut-rate 
rose. However, in comparison to that under the CFS, the 
scheduling latency differed notably only when the cut-rate 
was higher than 8. This means that the degree of the fairness 
degradation due to the improved scheduling latency under 
MCFS is substantial. Especially, when the cut-rate was 32, 
the alarm clock process was scheduled like a real-time 
process. This means that even little difference in priority 
enables CPU monopoly by a process. Consequently, the 
responsiveness of other processes as well as the stability of 
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the whole system can be harmed critically. Considering this, 
the cut-rate should be chosen carefully based on the 
expected maximum load and required response time of the 
prioritized applications.  

Next, we evaluated the proposed schemes with a 
multimedia player. The experiment’s configurations were 
similar to the previous experiment. We ran multiple 
numbers of Hackbench process groups together with the 
music player and measured the QoS of the music player. 
The priority of the music player was set to the highest 
priority under both CFS and MCFS and to real-time priority 
under the real-time support framework, while that of the 
Hackbench tasks was set to normal.  

Under the CFS, the perceptive QoS of the music player 
got worse with larger number of Hackbench process groups 
running on the system. The experimenters easily recognized 
frequent jitters and suspension of music playback under 
heavy load. Also, the music took significantly longer to 
play. 
 

 
Figure 7. Delayed playback time of music player given a varying number of 
Hackbench process groups. 
 

Figure 7 shows the prolonged playback time of the same 
music file, originally 3min 59s long, given a varying number 
of concurrent Hackbench process groups and under different 
scheduling schemes. If the music play is prolonged by 30s, 
the total music playtime will become 4min 30s. 

Under the CFS, music playback was noticeably prolonged 
with only three Hackbench process groups running 
concurrently. The prolongation increased linearly with an 
increase in the number of Hackbench process groups, 
increasing up to 30 s with 15 concurrent Hackbench process 
groups. 

Under the MCFS, significant prolongation of playback 
occurred only when there were more than seven 
concurrently running Hackbench process groups. Also, in 
the worst case, the prolongation of playback was only two-
thirds of that under the CFS. We could not find any 
noticeable or perceived delay, jitters, or suspension of 
playback under the real-time support framework. 

We further investigated the QoS of the music player by 
examining its decoding and buffer-writing activity. The 
music player periodically decodes a block of a music file 
and writes the decoded data to the sound buffer. When there 
is long delay in decoding of a single block, the quality of 
music playback may not degrade if there is remaining 
decoded data in the buffer. When the buffer is emptied 

before replenishment as a result of delayed decoding, jitters 
or suspension of music play occur. Thus, the single block 
writing delay is not an appropriate metric to judge the 
quality of service. Although the cumulative buffer writing 
delay is not a direct measure of the music playback quality 
either, we found that it reflects the quality of music playback 
more accurately than the writing delay of a single block.  

Normally, the decoding and buffer-writing activity takes 
15ms to 20ms under the CFS when there are no other active 
tasks. Thus, we defined the buffer-writing delay as the 
difference between the elapsed decoding and buffer-writing 
time and 20ms. For example, when decoding and buffer-
writing a block takes 100ms, the buffer-writing delay of this 
block is 80ms. 

 
Figure 8. Cumulative buffer-writing delay of the music player given a 
varying number of Hackbench process groups. 
 

Figure 8 shows the cumulative buffer writing delay 
during the music playback under the CFS, MCFS, and with 
the real-time support framework.  

Under the CFS, buffer-writing delay occurs even with 
only one group of Hackbench processes running. This 
tendency is similar to that shown in the experiments with the 
alarm clock task. The buffer-writing delay increased steadily 
with increasing numbers of Hackbench process groups until 
reaching 40,000ms. 

The MCFS significantly suppressed buffer-writing delay. 
The delay did not exceed 28,000ms in the worst case, 
approximately 30% better than the CFS. Also, noticeable 
delay occurred only beyond four concurrent Hackbench 
groups. With the real-time support framework, as expected, 
no significant buffer-writing delay occurred. 

When there are a small number of Hackbench tasks, the 
scheduling delays of a prioritized task are usually short and 
frequent. On the contrary, when there are a large number of 
Hackbench tasks, the scheduling delays of a prioritized task 
are generally long and infrequent. 

This tendency is illustrated by the differences between the 
slope patterns of Figure 7 and Figure 8. Even when buffer-
writing delays occur, the music may play without noticeable 
QoS degradation if the delays are sufficiently short that they 
do not empty the buffer. Although there are a lot of buffer-
writing delays with a small number of Hackbench process 
groups under the CFS, as Figure 8, these delays did not lead 
to jitters or suspension of music playback, as shown in 
Figure 7. 

In order to analyze the performance overhead of the 
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proposed schemes, we measured the average completion 
time of the Hackbench tasks during the music player 
experiments. Figure 9 shows the average execution time 
normalized to the results under the CFS. 
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