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1 Abstract—Web browsing on mobile networks is slow in 
comparison to wired or Wi-Fi networks. Particularly, the 
connection establishment phase including DNS lookups and 
TCP handshakes takes a long time on mobile networks due to 
its long round-trip latency. In this paper, we propose a novel 
web browser architecture that aims to improve mobile web 
browsing performance. Our approach delegates the connection 
establishment and HTTP header field delivery tasks to a 
dedicated proxy server located at the joint point between the 
WAN and mobile network. Since the traffic for the connection 
establishment and HTTP header fields delivery passes only 
through the WAN between the proxy and web servers, our 
approach significantly reduces both the number and size of 
packets on the mobile network. Our evaluation showed that the 
proposed scheme reduces the number of mobile network 
packets by up to 42% and, consequently, the average page 
loading time is shortened by up to 52%.

Index Terms—Browsers, Internet, Mobile computing, Web 
services, World Wide Web.

I. INTRODUCTION

The data traffic generated by web browsing accounts for 
the second largest portion of mobile network traffic [1]. 
Mobile web browser users, however, experience slower web 
loading time in mobile network environments than in 
conventional networks such as wired or Wi-Fi networks [2]. 

In mobile network environments, low bandwidth, long 
round-trip time (RTT) and radio signal variation may 
aggravate the web loading delay. Since many web content 
providers are changing their web pages to become mobile-
friendly, with sizes between 100 to 200 kbytes, the 
significance of the low bandwidth, however, is gradually 
shrinking. In addition, the signal strength is considered to be 
negligible to TCP downlink performance as long as it is 
above a threshold [4]. Consequently, lots of researchers 
have claimed that the long RTT of a mobile network is the 
most significant inhibitor of fast mobile web browsing [3-4].

A web page usually has many embedded objects that 
reside at other web sites. Loading a web object involves a 
domain name system (DNS) lookup operation and a 
transport control protocol (TCP) handshake during the 
connection establishment phase between the mobile web 
browser and the web server. The size of packets for DNS 
lookups and TCP handshakes is generally small. However, 
transferring them over a mobile network requires significant 
time due to the long RTT. As a result, such frequent small-
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packet communications slow down the overall web page 
loading time on mobile networks.

Meanwhile, according to the HTTP standard [6], many 
web browsers embed additional header fields in HTTP 
requests, such as Accept-Language, Accept-Charset, and 
User-Agent. These fields are useful for web servers since 
they can make better decision for responding the requests in 
accordance with the content of the fields. But, most of the 
header field data does not change frequently since these 
fields represent the web browser. These header fields, 
however, occupy precious mobile network bandwidth and 
burden the load on the mobile network. 

In this paper, we propose a novel mobile web browser 
architecture that aims to reduce the page loading delay over 
a mobile network. The proposed architecture consists of a 
mobile web browser and its corresponding proxy server. The 
proxy server resides at the joint point between the wide-area 
network (WAN) and the mobile network. The mobile 
browser stays connected to the proxy server with a persistent 
connection, which is defined in the hypertext transfer 
protocol (HTTP) 1.1 standard.

The mobile browser in our approach delegates the 
connection establishment tasks to the proxy server. The 
mobile browser no longer generates TCP handshakes and 
DNS lookups once the connection between the mobile 
browser and the proxy server is established, and the traffic 
for the connection establishment phase passes only through 
the high-speed WAN link between the proxy and web 
servers. Consequently, the time delay caused by TCP 
handshakes and DNS lookups over the mobile network is 
eliminated from the web page loading time.

In addition, all HTTP requests from the mobile web 
browser are forwarded to the proxy server and, in turn, the 
proxy requests the web pages from web servers on behalf of 
the mobile browser. Therefore, inclusion of the header fields 
in the requests at the browser end is unnecessary in the 
proposed architecture because the header fields can later be 
appended by the proxy server. Appending the header fields 
at the proxy server greatly reduces the size of the request 
travelling through the mobile network. In addition, this 
approach greatly leverages the advantage of HTTP 
pipelining because the smaller a request is, the more 
requests a packet delivers. 

We evaluated the proposed scheme with the prototype 
implementation. The prototype mobile web browser is built 
upon the built-in web browser of Android, which is an open-
source mobile operating system and a simple proxy server is 
implemented to be paired with the prototype mobile web 
browser. The evaluation was conducted with various access 

A Hybrid Web Browser Architecture 
for Mobile Devices

Junguk CHO1, Euiseong SEO2, Jinkyu JEONG2

1School of Computing, University of Utah, UT 84112, USA
2Sungkyunkwan University, Gyeonggi-do 440-746, Republic of Korea

* Corresponding author: jinkyu@skku.edu

Digital Object Identifier 10.4316/AECE.2014.03001

1582-7445 © 2014 AECE

[Downloaded from www.aece.ro on Thursday, November 06, 2014 at 05:59:11 (UTC) by 115.145.179.186. Redistribution subject to AECE license or copyright.]



Advances in Electrical and Computer Engineering                                                                      Volume 14, Number 3, 2014

4

patterns over real world web pages from the five most 
popular web sites [7-8].

The rest of the paper is organized as follows. Section 2 
introduces technical background about web browsing on 
mobile networks and the motivation for this research. 
Section 3 presents our mobile web browser architecture, and 
Section 4 analyzes the effectiveness of the prototype 
implementation of the proposed scheme. After introducing 
related work in Section 5, we conclude this paper in Section 
6.

II. BACKGROUND AND MOTIVATION

In this section, we describe the web browsing process 
from establishing connections to rendering a complete web 
page. We also associate network characteristics with the 
web browsing process from the perspective of web loading 
performance. Then, we depict the motivation of this work by 
demonstrating the adverse effect of long RTT in the mobile 
network on web loading performance. Finally, we introduce 
previous web browsing architectures and their pros and cons. 

A. Background

Figure 1. Workflow of a web browser [9].

Fig. 1 shows the internal process of a web browser while 
it is loading a web page [9]. The work flow begins when a 
user inputs the uniform resource locator (URL) of a web 
page in the browser window and pushes the load button of 
the browser. The browser first sends a DNS query to resolve 
the IP address of the URL. Then, the browser establishes a 
TCP connection to the web server through three-way 
handshaking. Both the DNS query and TCP three-way 
handshaking are conducted in the connection establish phase.

After the browser establishes a TCP connection with the 
web server, the browser requests the web page from the 
server, and in turn receives the web page as the response 
from the server. The browser parses the web page and 
generates a document object model (DOM) tree, which 
stores the information on the structure and data on the web 
page. 

A web page may have multiple embedded web objects 
including JavaScripts, cascading style sheets (CSSs) and 

images. Such embedded objects are sometimes located in 
other remote web sites. The browser makes a request to an 
appropriate web server when it finds an embedded web 
object. Each web request for embedded objects is followed 
by a new connection establishment phase when the browser 
has no open connection with a corresponding web server. 
The browser starts rendering of a web page when a 
sufficient number of its embedded objects are fetched. When 
all embedded objects are fetched and rendering of the web 
page is complete, the web page loading instance finishes [9].

The components in the loading process can be classified 
into two classes: network operations and local computations. 
The gray boxes with dotted lines in Fig. 1 denote network 
operations, and the white boxes represent local 
computations. 

Naturally, the network operations become performance 
bottlenecks when the underlying network has low bandwidth 
or long RTT whereas the performance of the local 
computation operations is bounded by the CPU performance. 
Lots of previous studies claimed that there are two possible 
sources of performance bottlenecks for web page loading 
operations over mobile network. One is poor network 
performance [3-5], and the other is limited CPU capability 
[10-13]. However, the improvement in web page loading 
time from reducing the amount of computation is marginal 
in current smartphone systems [4]. 

Although the performance of a mobile network is 
determined by many factors such as its network bandwidth, 
RTT and radio signal strength, improving the bandwidth of 
an existing mobile network does not improve the browser 
delay significantly [3-4]. Moreover, TCP downlink 
throughput is not affected by the signal strength if it is above 
some threshold [3]. Accordingly, the RTT of the network is 
considered the most significant contributor to web browsing 
performance over a mobile network [3-4].

B. Motivation
TABLE I. AVERAGE NUMBER OF PACKETS/SIZE OF DATA (IN

KBYTES) FOR LOADING MOBILE WEBSITES. THE NUMBER OF
PACKETS AND THE AMOUNT OF DATA FOR THE HTTP RESPONSE

IS OMITTED

Whole Page
DNS 

Queries
TCP 

Handshakes
Web Sites

TCP Closes
HTTP 

Requests
Avg. Conn. 

Reuse Counts
528.7/372.8 12.0/2.0 25.0/1.7

http://google.co.kr
33.3/2.1 15.4/10.0 7.1
80.0/30.2 6.0/1.3 9.5/0.7

http://xhtml.weather.com
12.7/0.8 9.0/5.9 5.8

433.7/209.0 11.1/2.3 57.0/4.0
http://cnnmobile.com

75.9/4.9 27.2/18.2 8.2
157.8/76.2 8.1/1.6 17.7/1.2

http://m.facebook.com
23.4/1.5 8.8/5.1 2.9

216.0/95.7 6.0/0.8 27.0/2.1
http://en.m.wikipedia.org

36.0/2.3 13.7/7.8 4.7
908.7/556.8 30.6/6.3 72.8/5.1

http://m.espn.go.com
96.7/6.2 40.5/25.7 16.2

In order to reveal the proportion of connection 
establishment phases to the total network transmission for 
web page loading, we analyzed the number of packets and 
size of data transferred to load each of the six most popular 
mobile web sites [7-8]. Table I shows the measured data and 
classifies it into packets and data for DNS lookups, TCP 
handshakes, TCP closes and HTTP requests. It also includes 
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the number of connection reuses for an instance.
According to our measurement, the packets for the 

connection establishment operations (TCP handshakes and 
DNS lookups) take 12% of the total transferred packets. 
However, the amount of data needed for the connection 
establishment operations is negligible. Consequently, we 
can conclude that the size of a packet for the connection 
establishment operations is small in comparison to that for 
web object transmission. Because the RTT of the mobile 
network is slow, the time to finish the connection 
establishment phase is determined by the number of
transferred packets rather than the amount of transferred 
data. Thus it is expected that the connection establishment 
phase significantly affects the overall web page loading time 
a over mobile network due to its slow RTT. Also, the 
proportion of packets for the connection establishment phase 
is expected to increase as the amount of cached data in the 
local storage increases. When many cached objects are hit, 
the number of packets for loading a web page decreases and 
the portion of the connection packets relatively increases. 

To lessen the connection establishment overhead, the 
HTTP 1.1 standard introduced the HTTP persistent 
connection and HTTP pipelining. These two schemes are 
currently provided by most commercial web browsers. The 
HTTP persistent connection is a technique to keep a TCP 
connection open after finishing an HTTP transaction, and to 
reuse the open connection for the forthcoming HTTP 
transactions instead of opening new connections. By default, 
all connections are regarded as persistent under HTTP 1.1 
and as non-persistent under HTTP 1.0. Depending on the 
value of the connection header field, the web server closes 
or maintains the connection after servicing the HTTP 
request.

The built-in web browser of Android supports the HTTP 
persistent connection like many others. The browser stores 
an open persistent connection in the connection cache after 
finishing the HTTP transaction if the used HTTP connection 
supports the persistent connection (i.e., HTTP 1.1 or HTTP 
1.0 with keep-alive). Otherwise, the browser closes the 
connection. If a connection to a web server is necessary for 
a new HTTP request, and there is a cached connection to the 
web server in the connection cache, the browser reuses the 
cached connection to avoid the connection establishment 
overhead.

However, the number of reused connections is less than 
half of the total number of HTTP requests according to our 
analysis as shown in Table I. This is because a web page 
usually has multiple embedded objects that are provided by 
different web sites and new connections to the web sites are 
necessary to access the embedded objects. In addition, the 
limited capacity of the connection cache forces the 
connection cache to discard cached connections that may be 
reused in the near future. Even if the capacity of the browser 
connection cache is unlimited, web servers may terminate 
the open persistent connections when they become idle [14]. 
Accordingly, the effect of the persistent connection is 
limited in practice, and newly established connections 
struggle with the long RTT of the mobile network. 

Meanwhile, HTTP pipelining enables web browsers to 
issue HTTP requests without waiting for responses to the 
previous requests. With HTTP pipelining, a web browser 

packs multiple requests in a single TCP packet. This may 
greatly reduce the number of packets and the number of new 
connections for requesting web objects in the same web 
server. HTTP pipelining also benefits from thread-level 
parallelism at a server side since it overlaps processing of 
simultaneous multiple requests.

Although HTTP pipelining is effective in improving the 
web page loading delay, its actual effectiveness is affected 
by two reasons as shown in Fig. 2.

First, the maximum transmission unit (MTU) size of the 
underlying network limits the number of HTTP requests 
packed in a single TCP packet. For example, the average 
size of an HTTP request in Table I is approximately 650 
bytes while the MTU size of a TCP packet is 1,500 bytes. 
Therefore, only two or three HTTP requests are allowed to 
be delivered by a TCP packet as depicted in Fig. 2(a).

(a) Small MTU size

(b) Embedded objects at different sites

Figure 2. Disturbance factors of HTTP pipelining

Second, HTTP pipelining is not applicable when 
embedded web objects exist at multiple web sites because 
HTTP pipelining pipelines multiple requests in a single TCP 
connection. Accordingly, there are three embedded objects 
in a web page and if their hosts are different, HTTP requests 
for them cannot be packed in a single TCP packet as shown 
in Fig. 2(b).

Considering that the RTT of a mobile network is quite 
long, reducing the number of packets by exploiting the two 
optimization techniques, persistent connection and request 
pipelining, is crucial for improving web page loading time. 
In this paper, we propose a web browser architecture that 
minimizes the number of packets to load a web page by 
maximizing the benefits from these two optimization 
techniques.

C. Existing Mobile Web Browsers

In order to resolve the slow web page loading issue on a 
mobile network, a few research results have been reported. 
Many of them fall into two categories: thin-client 
architecture and native browser architecture [15].

A thin-client web browser consists of a light-weight web 
browser and a remote proxy server. A request for a web 
page is forwarded to the proxy server by the browser, and 
then the proxy fetches the web objects for the page, renders 
the web page image, and sends the rendered image back to 
the web browser. The browser is only responsible for 
forwarding user inputs to the proxy and for displaying the 
rendered web page images delivered from the proxy. This 
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architecture was initially suggested to overcome the limited 
computing power of mobile devices [10-13]. In addition to 
this, the thin-client scheme also lessens the web page 
loading delay from the slow RTT to some degree since the 
proxy server is in charge of establishing connections and 
retrieving the embedded web objects.

However, the thin-client model has three critical 
drawbacks. First, some web objects may not be properly 
rendered, and dynamic web pages may not function 
correctly because what the browser shows to users are 
simply rendered images or preprocessed web pages [15]. For 
example, an interactive feature of a web page written in a
script language will not react to user inputs because the 
browser is ignorant of the existence of the script code. 
Moreover, reloading or zooming in/out a part of a web page 
is difficult to handle for the same reason. The interactivity of 
mobile applications is important in the future internet [2]. 
Accordingly, the lack on supporting the interactivity can be 
an obstacle to a better web browsing experience on the 
mobile network.

Second, although it may reduce the number of small 
packets, the thin-client architecture sometimes increases the 
amount of data transferred over the mobile network. 
According to experiments in related studies, the mobile 
network data generated by a thin-client browser are typically 
larger than those generated by a conventional web browser 
[11-12], depending on the web page characteristics [13]. 
This mobile network traffic increase stems from the lack of 
a local cache for storing web objects and the size of the 
rendered web page images.

Finally, this approach increases burdens on the proxy 
server. If the proxy server is overloaded it could adversely 
affect the web browsing performance [15]. Because the 
proxy is in charge of fetching web objects and rendering 
web pages on behalf of its clients, the computation load to 
the proxy is much heavier than the load on conventional 
web proxy servers.

As the hardware performance of mobile devices rose to a 
level sufficient to execute high-performance web browsing 
engines (e.g., WebKit), many commodity mobile devices 
chose to employ native web browsers. The native browser 
handles every step of processing a web page request by 
itself in order to provide an interactive and dynamic 
browsing experience similar to that on a PC. Their interface, 
including zoom, feels more natural and their page loading 
time feels faster than their thin-client counterparts because 
they draw intermediate renderings during page loading and 
update the page being loaded continually [16].

Rapid improvements in processor performance together 
with the spread of mobile-device-oriented web pages are 
boosting the popularity of native web browsers in mobile 
devices. However, as mentioned in Section 2.2, native 
browsers generate a large number of small packets during 
the connection establishment phases, and this severely limits 
the page loading time over a mobile network where the RTT 
is exceedingly slow. 

The thin-client-based approach can reduce the number of 
connection establishment phases over the mobile network. 
In addition, the native browser is capable of providing an 
outstanding user experience. Since both architectures have 
different advantages, we propose a new browser architecture 

that hybridizes both architectures.

III. TWO-TIER BROWSER ARCHITECTURE

In this paper, we propose a two-tier browser architecture 
(TwoB) which minimizes web page loading time on a 
mobile network. TwoB consists of a native mobile browser 
on a mobile device and a proxy server on the border 
between the WAN and the mobile network. The browser 
processes all computations ranging from requesting the 
content of a web page to rendering the page, and provides 
user interaction via touch capabilities. Accordingly, end 
users can experience natural interaction with interactive 
features in web pages. The proxy server is an intermediary 
for delivering request/response packets between the browser 
and web servers, and also processes the connection 
establishment phase on behalf of the browser. By 
eliminating the connection establishment phases for all web 
requests, web browsers do not need to wait for time-
consuming connection packet transfers on a mobile network. 
In addition, from the nature of this request/response relay, 
our proxy server can be lightly loaded and handle more 
clients than the thin-client model does. The detailed 
architecture of TwoB is depicted in Fig. 3. 

Figure 3. TwoB Architecture

A. Overview

The proxy server in TwoB (denoted as the TwoB proxy) 
consists of a browser back-end, a pipeline manager and a 
connection manager. The browser back-end is a counterpart 
of each mobile browser and relays web requests generated in 
each mobile browser. Its main role is to maintain a persistent 
connection between itself and a mobile browser. In addition, 
it manages the static header field cache in order to reduce 
the sizes of HTTP requests passing through the mobile 
network; the use of a static header field cache is illustrated 
in Section 3.4.

The connection manager manages connections between 
the proxy server and web servers. It maintains a TCP 
connection pool for web servers and provides connection 
sharing for multiple mobile clients which are connected with 
this proxy server. In addition, it provides a simple DNS 
cache in order to reduce duplicate DNS queries when 
multiple clients are requesting web pages from a small set of 
web servers. 

Finally, the pipeline manager is used to multiplex HTTP 
requests between the browser back-end and the connection 
manager. Its main role is to keep the sequence of responses 
the same as the sequence of requests. Since our scheme 
reduces the size of HTTP requests passing over the mobile 
network, the number of packable HTTP requests in a single 
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TCP packet is different between the mobile network and the 
WAN. In addition, requests which are destined for different 
web servers arrive at the same connection in the proxy. 
Accordingly, the pipeline manager arbitrates HTTP 
pipelining between the mobile network and the WAN. 

Figure 4. Simplified mobile network architecture

When we deploy the TwoB proxy server in mobile 
network, we should consider location of it. Fig. 4 shows 
current mobile network architecture. Mobile network 
generally uses GPRS tunneling protocol (GTP) not only to 
transfer data packets but also to support handover and QoS 
guarantee per user. These tunnels are depicted as T1 and T2 
in Fig. 4. When a mobile device transmits a packet, the 
packet is first encapsulated by radio access network (RAN) 
and decapsulated by serving gateway (SGW) or serving 
GPRS support node (SGSN). The packet is encapsulated 
again by SGW or SGSN and decapsulated by packet data 
network gateway (PGW) or gateway GPRS support node 
(GGSN). Finally, the packet is forwarded to the internet.
Considering the GTP of mobile network, when our proxy 
server resides in the middle of such tunnels, the packet 
should require additional encapsulation and decapsulation 
because the proxy works with decapsulated packets. In this 
regard, the gateway of mobile network (e.g., PGW or 
GGSN) is reasonable location of our TwoB proxy server 
without the burden of additional packet en/decapsulation.

The following subsections explain the details of our 
scheme from setting up the browser architecture to handling 
web requests. 

B. TwoB Initialization

The main advantage of our scheme is that our proposed 
browser architecture does not need a full redesign of the 
previous web browsing environment. Instead, our scheme 
slightly modifies the browser in mobile clients in order to 
make it specific to the proxy server in our architecture. 

Figure 5. Assigning IP address of a proxy to devices

In order to seamlessly use our scheme, the module for 
providing the configuration of the proxy server is added to 
the DHCP server in the mobile network provider and the 
module for automatically setting up the information is 
installed in the mobile browser. When a smartphone 
connects to the internet through the mobile network, the 

configuration of the proxy server along with the 
smartphone’s IP address and DNS server IP address is 
assigned to the smartphone as shown in Fig. 5.

When the browser architecture is managed by a mobile 
network provider, our scheme has three benefits. First, by 
eliminating the connection establishment phase over the 
mobile network, web loading time can be reduced for its 
subscribers. Second, end-users do not need to manipulate 
proxy setting in their smartphones. Since the configuration 
of the proxy is automatically set whenever the mobile 
network is available, users can easily exploit our scheme 
without manipulating the detailed configuration of the proxy 
server. Finally, from the perspective of the mobile network 
provider, a reduced number of packets decrease its network 
load.

The purpose of the proxy server in the proposed 
framework is clearly different from that of the conventional 
web proxy servers, which retrieves and stores frequently 
accessed contents to reduce network traffic. The 
conventional proxy servers are located in the client-end of 
slow network so that they reduce the traffic via the slow 
network and, in turn, provide fast response. However, the 
proxy server in the TwoB architecture is placed in the 
server-end of mobile network, which is significantly slower 
than WAN. In addition, previous studies revealed that data 
caching with a proxy server, which resides on the boundary 
between mobile network and WAN is less effective for 
reducing web browsing latency than connection caching 
[17]. Therefore, we believe that, the benefit from content 
caching by the proxy server in TwoB would be marginal to 
the overall response time. This means that the proxy server 
does not require large and fast storage devices and main 
memory, thus can be manufactured at low cost in 
comparison to the conventional proxy servers.

C. Exploitation of Persistent Connections

As described in Section 2.2, connection establishment 
phases during web page loading become a performance 
bottleneck when these phases are conducted on a long-RTT 
mobile network. An HTTP persistent connection, which is 
aimed at avoiding the connection establishment phase, 
however, cannot be fully exploited in a mobile browsing 
environment. Our scheme actively uses HTTP persistent 
connections for a better web browsing experience as follows.

1) On Mobile Network
The main purpose of using a proxy server is to avoid 

frequent connection establishment phases over the mobile 
network. General proxy servers, such as Squid, are in charge 
of only relaying HTTP requests and responses between web 
browsers and web servers. Those are not in charge of 
keeping connections with the browsers open. Accordingly, 
the connections between the browser and the proxy cannot 
be persistent when the proxy server disconnects them or 
when the HTTP responses have no keep-alive flags. In this 
regard, a new connection establishment phase can probably 
occur at any time if a mobile browser uses a general proxy 
server. 

To avoid this unpredictable new connection establishment, 
our scheme tightly bounds the proxy browser, especially the 
browser back-end with a mobile browser. The connection 
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between the browser and the proxy is only disconnected 
when a smartphone is powered off or is given a new IP 
address. Except for these cases, the connection is always 
kept open. We denote this type of connection as a semi-
permanent connection. 

In order to make use of the semi-permanent connection 
seamlessly, we use an HTTP persistent connection, which is 
a standard feature in HTTP version 1.1. By using an HTTP 
persistent connection, mobile browsers do not disconnect 
the opened connection with the proxy server. When a TCP 
connection is opened to fetch the main HTML page, the 
persistent connection feature keeps the connection open for 
succeeding HTTP transactions (for embedded objects such 
as images, JavaScripts, etc.) to the same web server. 
Accordingly, an additional connection establishment phase 
is not required, and the response time for fetching embedded 
objects is shortened. This feature is usually implemented in 
many web browsers and servers so that our scheme can be 
easily adopted into various native browsers, such as Firefox, 
Safari, and Android built-in browsers, with few 
modifications.

Instead of browser-side support, we need to manage the 
proxy server to completely support the HTTP persistent 
connection even if web servers do not support the persistent 
connection. Since the feature is adapted in HTTP version 1.1, 
many web browsers intentionally disconnect the TCP 
connection when the version field of an HTTP response is 
1.0 and the keep-alive in the connection field is unset. If the 
proxy server relays such HTTP responses to the mobile 
without any modification of the responses, the browser will   
disconnect the connection even though the connection is 
actually established with the proxy instead of the web server. 
To cope with this issue, the connection manager in the proxy 
server replaces the value of the connection header field of 
each HTTP response with keep-alive if that value is close. 
As a result, the browser naturally keeps the connection open 
for subsequent HTTP transactions. 

In the native browser approach, a persistent connection 
can be disconnected for the following two reasons. First, 
some browsers (e.g., Android built-in browser) terminate 

persistent connections even if the HTTP version is 1.1. Due 
to connection management cost, those browsers reap idle 
TCP connections after a configured timeout has occurred. In 
order to avoid this connection termination, we modified our 
prototype browser to disable the timeout function. 

Second, most browsers limit the number of opened TCP 
connections below some threshold (e.g., eight entries in a 
connection cache in the Android built-in browser). When 
this connection cache is full, one connection is closed by a 
cache replacement policy (e.g., least recently used policy) to 
cache a new connection whose destination host is not found 
in the cache. In our scheme, this phenomenon never happens 
because the proxy server is the only destination host that the 
browser communicates with.

Fig. 6 shows how the communication occurs between the 
mobile browser, the proxy server, a DNS server and a web 
server in a general mobile browsing environment and in our 
scheme. In our scheme, the browser first initializes the 
proxy server by establishing persistent TCP connections and 
by sending the browser’s information to the proxy which 
will be used for reducing the size of HTTP requests; Section 
3.4 details the information. This phase occurs only once 
when the smartphone uses the mobile network. For each 
HTTP transaction, the HTTP request generated by the 
browser is sent to the proxy server. The proxy server 
retrieves the URL from the HTTP request and performs an 
HTTP transaction with the corresponding web server by 
resolving the IP address and by establishing a TCP 
connection. It is important to note that this connection 
establishment phase occurs only on the fast WAN. Then, the 
proxy sends the HTTP request and receives its response 
from a web server. Finally, the proxy server modifies the 
HTTP response to make it support the HTTP persistent 
connection and returns the modified response to the browser. 
As compared to Fig. 6(a), our scheme shows a shorter HTTP 
transaction phase as presented in Fig. 6(b) due to avoiding 
the connection establishment phase. In Fig. 6(b), the DNS 
query phase accounts for a large portion of time. But, 
successive transactions for embedded web objects that are 
hosted in the same web server do not require DNS query 

(a) In a general mobile browsing environment                                              (b) In our scheme
Figure 6. The procedure for processing an HTTP request
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phases. 
Maintaining the semi-persistent connection does not 

affect the power consumption of a mobile device. The radio 
device is only turned on when it has some packets to 
transmit. Otherwise, it turns into a low-power state [25]. 

An open TCP connection can be disconnected when its 
associated NAT (network address translation) entry is 
removed from the NAT table of the mobile network carrier
[26]. This, however, is an easily resolvable issue. The carrier 
can simply postpone the removal of NAT entries associated 
with the semi-persistent connections since the semi-
persistent connection is a carrier-supported feature to 
provide better web browsing experience to its customers. 

2) On WAN
In our browsing environment, the web browsing 

experience is not only determined by the mobile network 
side, but is also affected by the WAN side. Accordingly, it is 
important to optimize connections between the proxy server 
and web servers. In our architecture, the connection 
manager is in charge of managing this kind of connection. 

The connection manager maintains two caches, a TCP 
connection cache and a simple DNS cache. The former is 
aimed at reducing TCP connection establishment phases by 
exploiting the HTTP persistent connection standard, and the 
latter is to reduce DNS query overhead. When an HTTP 
transaction is forwarded from the browser back-end, the 
connection manager looks up the DNS cache in order to 
reduce duplicated DNS queries. The DNS cache follows the 
DNS caching policy standard [18]. When the IP address of a 
web server is unknown, the connection manager sends the 
DNS query to an upper-level DNS server and stores the IP 
address in the DNS cache. 

When the connection manager unveils the IP address of 
the web server to send an HTTP transaction, it should find 
out a cached (opened) connection in the connection cache. If 
this is not found, it opens a new connection with the desired 
web server. Then it forwards the HTTP request to the web 
server. When corresponding responses are transferred and if 
the web server supports the HTTP persistent connection 
standard, the connection is stored in the connection cache 
for further reuse.

Although our proxy server manages the connection cache, 
many web servers disconnect opened (idle) connections 
after some period. Accordingly, the connection manager 
only maintains opened connections until web servers 
disconnect them. Previous work revealed that 70-80% of 
real-world web servers keep an idle connection open for at 
least one second, and 65-76% of them for five seconds [15]. 
From this result, we believe that caching opened 
connections in the proxy server will help reduce the web 
loading delay when multiple mobile clients are managed in 
the proxy server. 

D. Exploitation of Request Pipelining

As described in Section 2.2, the HTTP pipelining feature 
in HTTP 1.1 provides a way of increasing the 
responsiveness of HTTP transactions by sending multiple 
HTTP requests in a single TCP connection without 
receiving the previous responses. The feature also enables a 
single TCP packet to ship multiple HTTP requests. 

Accordingly the number of round trips for sending HTTP 
requests is decreased. The effectiveness of the pipelining, 
however, is degraded by the two factors described in Section 
2.2: the size and the destination of HTTP requests.

In our browser architecture, we have an opportunity to 
increase the effect of HTTP pipelining. From the traced 
packets in Table I, we found that a substantial part of HTTP 
requests are invariant [19]. Those static header fields are 
Accept-Language, Accept-Charset, User-Agent, and so on; 
these fields usually specify the information for the mobile 
browser. Accordingly, the static header fields can be omitted 
in HTTP requests when the request is transferred to the 
proxy server. Instead, the omitted fields can be appended in 
the proxy server since the proxy server has a browser back-
end that is specific to a mobile client. We denote the HTTP 
requests without static header fields as incomplete HTTP 
requests and HTTP requests having static header fields 
appended in proxy as complete HTTP requests.

The browser back-end in the proxy server in turn is 
responsible for appending the omitted static header fields. 
When the semi-permanent connection between the browser 
and the proxy is established, the browser sends its static 
header fields to the proxy. The browser back-end stores the 
static header fields in the static header cache by using the 
browser’s IP address as a key. Subsequent HTTP requests 
sent from a browser are complemented by the proxy server 
using the stored static header fields. When the browser 
disconnects the semi-permanent connection for some reason 
(e.g., power off, assigning a new IP address, etc.) the stored 
static header fields for the browser are discarded. 

(a) Pack more HTTP requests

(b) Pack HTTP requests with different hosts

Figure 7. Improving the effectiveness of HTTP pipelining

By using this approach, the size of HTTP requests on the 
mobile network can be reduced, and the smaller the size of 
the HTTP requests is, the more HTTP requests can be 
packed into a single TCP packet. Therefore, the 
effectiveness of HTTP pipelining as limited by the size of 
the HTTP request can be improved. Even if the number of 
TCP packets holding HTTP requests is not decreased, the 
amount of data on the mobile network is still reduced. Fig.
7(a) shows that five HTTP requests can be packed in a 
single TCP packet in our architecture.

The second obstacle to HTTP pipelining depicted in 
Section 2.2, different destination hosts of HTTP requests, is 
naturally resolved in our browser architecture. When a 
browser directly connects to web servers, each HTTP 
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request with different hosts is sent to corresponding web 
servers through separate TCP packets. In our scheme, 
however, all HTTP requests are sent via the semi-permanent 
connection whose other end is the proxy server. Accordingly, 
the limitation caused by different hosts for HTTP requests is 
naturally resolved as shown in Fig. 7(b).

The side effect of using HTTP pipelining in our scheme is 
that when a browser requests multiple objects in different 
hosts, incomplete HTTP requests are sent in a single TCP 
connection, but the complete HTTP requests are sent to web 
servers in different TCP connections. Each web server may 
return HTTP responses in a different order due to their 
different levels of load, RTT and link speed. The standard of 
HTTP pipelining, however, is to keep the order of responses 
the same as the order of requests [6]. Accordingly, it is 
essential to adjust the sequence of HTTP responses to the 
browser front-end in the proxy server even though the 
responses from web servers arrive in different orders. In 
addition, if multiple responses from multiple web servers are 
the answers of requests from the same semi-persistent 
connection, the responses should be returned through that 
semi-persistent connection. 

To cope with this problem, the pipeline manager in the 
proxy server arbitrates the sequence of requests and 
responses to make the order of responses the same as that of 
the requests. For example, a web browser front-end requests 
three objects, A, X and B. A and B are hosted in the same 
web server while object X is in a different web server. When 
the response for X first arrives, this response is not 
forwarded to the browser front-end until the responses for A 
and B arrive. Fig. 8 shows this response arbitration in the 
pipeline manager when the requests are sent as shown in Fig.
8(b).

Finally, the pipeline manager exploits HTTP pipelining 
supports of web servers. Even if WAN is fast in terms of 
link speed and RTT, reducing the overhead of network 
layers such as IP and data-link is important. Accordingly, 
the pipeline manager relays pipelined requests from the 
browser front-end to web servers. 

IV. EVALUATION

A. Experimental Setup

We implemented the prototype of the web browser front-
end based on the default web browser of the Android OS, 
and the TwoB proxy server based on Twisted, an event-
driven web server framework. The Android OS with the 
prototype web browser was ported to a commercial 
smartphone for evaluation.

In order to emulate the web browsing over a mobile 
network, we set up the evaluation environment as shown in 
Fig. 9. Two Linux servers are used: (1) one emulates a 
mobile network provider, and (2) the other performs as a 
DNS server and web servers. The former node provides a 
Wi-Fi access point to the smartphone and runs a DHCP 

server and the TwoB proxy server. When the smartphone 
connects to the access point, the server assigns an IP address 
and provides the information for the TwoB proxy server and 
the DNS server in the second node. The second node also 
runs the Apache web server and provides multiple virtual 
hosts simulating different web sites. Since the DNS server 
returns the IP address of the virtual web servers for the DNS 
queries, every web request from the smartphone goes to our 
web servers. In each virtual web server, the time-out period 
of an idle connection is five seconds by default. 

We configured the Wi-Fi network between the proxy and 
the smartphone to imitate the characteristics of 3G network 
services in Korea. In a series of experiments, the mobile 
network showed approximately 147.3 kbps and 13.4 kbps 
for downlink and uplink bandwidth, respectively, and the 
average RTT to various web sites was 265 ms. These 
characteristics are similar to those in a prior study [3]. Based 
on this observation, we injected artificial delay into the Wi-
Fi network between the smartphone and the access point as 
shown in Table II. In addition, the two Linux machines have 
very low RTT compared with the WAN environment. In 
order to emulate the WAN, we injected 50 ms of RTT into 
the network link between the two machines as shown in 
Table II [3].

TABLE II. NETWORK CONFIGURATION FOR EVALUATION
Network RTT(ms) Uplink(kbps) Downlink(kbps)
Emulated

3G network
200 50 250

Emulated WAN 50 - -

Many web sites use dynamic web pages whose contents 
change by time and by accesses. Accordingly, both the 
number of packets and the size of transferred data for the 
same web site greatly vary during the evaluation. In order to 
eliminate these runtime variations, we replicated the 
contents of the web sites and used them in our evaluation. 
Detailed information about the replicated web pages is 
summarized in Table III. 

TABLE III. AVERAGE NUMBER OF PACKETS/SIZE OF DATA
(KBYTES) FOR LOADING REPLICATED WEB PAGES IN OUR

EVALUATION. THE LAST COLUMN OF EACH WEB SITE DENOTES
THE PORTIONS OF PACKETS/SIZE COMPARED TO THE ORIGINAL

WEB PAGES SHOWN IN TABLE I
Whole Page DNS Queries TCP HandshakesWeb 

Sites TCP Closes HTTP Requests Portion to Original
457/346.3 10/0.9 21/1.5Google

28/1.8 11/5.8 82%/74%
53/15.7 4/0.3 9/0.6Weather
12/0.8 5/2.5 76% / 61%

275/127.1 14/1.2 33/2.3CNN
44/2.9 25/13.1 79% / 61%

Facebook 122/72.9 6/0.5 9/0.6

Figure 9. Evaluation system configuration

Figure 8. The procedure of processing HTTP response in our scheme
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12/0.8 6/2.8 64%/58%
199/104.2 10/0.9 19/1.3Wiki

25/1.6 12/6.4 97%/87%

B. Evaluation Results

In our evaluation, we measured the number of packets, 
the size of transferred data and web loading time to access a 
web site. The former two results are measured at the access 
point using tcpdump. The web loading time is the elapsed 
time from when a user clicks the load button to when the 
progress bar of the browser hits 100% [4]. To measure the 
web loading time, the browser was modified to record time 
stamps for its internal operations.

At every iteration, the local cache of the browser is 
flushed (this leads to flushing connection caches together) 
and all web sites are sequentially visited with a time interval 
of 30 seconds. The results are average values obtained from 
fifty iterations. Native denotes the results from the 
unmodified native browser for comparison and TwoB 
denotes the results from our proposed scheme.

1) Native vs TwoB
In this subsection, we measured the web loading time of 

our scheme in comparison with that of the Android native 
browser. Fig. 10 shows the web loading delay, the number 
of packets passed through the mobile network and the 
amount of data passed in both schemes, native browser and 
our scheme. As shown in Fig. 10(a), our scheme reduced 
web loading time by 38-52% compared to the native 
browser. Since all packets for connection establishment and 
close are handled in the TwoB proxy, our scheme eliminates 
the packets in this category as illustrated in Fig. 10(b). As 
compared to the native browser, our scheme reduces the 
number of packets by 11-41%. The reduction in the number 
of packet is not as significant as the reduction in the web 
loading time because the connection packets and DNS 
packets are synchronous to the web loading process. When 
these packets are not complete, no further processes can 
progress. Accordingly, by reducing these synchronous 
packets, the browser can quickly progress on fetching web 
objects. 

Fig. 10(c) shows the amount of data passed through the 
mobile network. The main cause of data reduction is due to 
omitted connection packets and reduced size of HTTP 
requests, hence incomplete HTTP requests. But, since the 
amount of data for connection management and the HTTP 
request is tiny compared to the size of HTTP responses, the 
data size reduction is not as great as the reduction in the 

number of packets. 
Many previous studies revealed that the web browsing 

experience is largely correlated not with the bandwidth of 
the mobile network but with its long RTT [3-4]. Our 
evaluation results are consistent with the results found in 
previous studies. The main benefit of our browser 
architecture is eliminating unnecessary connection-related 
packets by maintaining a semi-persistent connection. 
Accordingly, our scheme does not incur several round trips 
for connection-related packets as depicted in Fig. 10(b). 
Although the amount of data reduction by using our scheme 
is negligible, our scheme reduced web browsing latency by 
half by reducing the number of round trips. 

As compared to the result in our preliminary study [23], 
the web loading time of the native browser increased by 
1100 ms on average due to injecting realistic WAN delay. 
Our scheme, however, showed still decreased web loading 
time by 60 ms on average. Since the TwoB proxy maintains
a local DNS cache and exploits HTTP persistent 
connections with web servers, these features help to offset 
the increased WAN delay to the measured web loading time.

Now, we measured the effect of appending static header 
fields in the TwoB proxy. This operation is denoted as HDE 
(header delta encoding). Fig. 11 shows the size of data 
transferred through the mobile network normalized to the 
Native browser. As shown in the figure, the effect of HDE 
resulted in a data size reduction of 2-19% compared to the 
native browser. The effect of data reduction outperforms 
over the effect of only using the semi-persistent connection
(denoted as w/o HDE in Fig. 11) between the browser front-
end and back-end (1-9%). 

In addition, exploiting HDE can increase the number of 
packets that can be packed into one packet. Table IV shows 

(a) Web loading delay                                        (b) The number of packets                                            (c) The size of data
Figure 11. Web loading delay, the number of packets passed through the mobile network and the amount of data passed in the native browser and TwoB

Figure 10. Normalized transferred data size on the mobile network when 
static HTTP header fields are complemented in the TwoB proxy

[Downloaded from www.aece.ro on Thursday, November 06, 2014 at 05:59:11 (UTC) by 115.145.179.186. Redistribution subject to AECE license or copyright.]



Advances in Electrical and Computer Engineering                                                                      Volume 14, Number 3, 2014

12

the average size of HTTP requests in each web site. As 
depicted in the table, the requests including static header 
fields (complete HTTP requests) are 544 bytes in size on 
average. However, the average size of dynamic fields is only 
283 bytes. This result means that omitting static header 
fields can increase the number of packable requests from 2.7 
to 5.3 in the tested cases. Accordingly, the number of 
request packets in the mobile network can be reduced when 
our scheme is used by a mobile network provider. 

TABLE IV. AVERAGE PACKET SIZE OF COMPLETE AND
INCOMPLETE HTTP REQUESTS IN BYTES

Sites
Complete 

HTTP reqs
Incomplete 
HTTP reqs

Google 540 270
Weather 511 245

CNN 641 350
Facebook 479 213

Wiki 598 339
Average 554 283

# of reqs in on MTU (1500 bytes) 2.7 5.3

2) Effects of TwoB Proxy Configuration
Although our browser architecture can improve web 

browsing, it is important to find the best configurations of 
our TwoB proxy and the browser front-end. The most 
important parameter is the number of semi-persistent 
connections since if the number of connections per browser 
front-end is large, the number of browsers that can be 
handled by a TwoB proxy is limited. 

Fig. 12 shows the web page loading times with varying 
numbers of semi-persistent connections. From the figure, 
two different results can be found: no loading time reduction 
and loading time reduction when the number of connections 
increases. The results of Facebook and Weather can be 
categorized in the former result, and those of Google, CNN 

and Wiki are in the latter one. In addition, the loading times 
of the three web sites are mostly saturated when the number 
of semi connections is four. 

In order to reveal the reasons for the results in Fig. 12, we 
conducted additional experiments. Fig. 13 shows the time at 
which each HTTP request is enqueued in the HTTP request 
queue in the browser front-end. The x-axis shows the 
serialized HTTP requests in each web site and the y-axis 
shows the time each HTTP request is queued in the HTTP 
requests queue in the browser front-end since the web page 
loading began. As shown in the figure, the request arrival 
patterns of two web sites, Facebook and Weather, are sparse. 
Hence, both web sites have a few HTTP requests and each 
request arrives with a long time interval. Accordingly, the 
chance to exploit additional connections is low since the 
time gap is large enough to complete previous HTTP 
transactions. 

The three web sites, Google, CNN and Wiki, however, 
have many HTTP objects and request tens of HTTP requests 
or more. Their arrival patterns are denser than the other two 
web sites. This means that more than five requests are 
queued at mostly the same time. Accordingly, exploiting 
more connections can lead to a reduction of queue sojourn 
time. 

In order to validate our analysis, we also measured the 
queueing delay of HTTP requests in the browser’s HTTP 
request queue. The queueing delay of an HTTP request is 
the time between when the request arrives at the queue and 
when the request is transferred to the TwoB proxy. 
Accordingly, when multiple objects are queued and if the 
throughput of the queue consumer, the number of semi-
persistent connections in our case, is low, the objects will 
have long queueing delays. 

Fig. 14 shows the queueing delays for the three web sites, 

Figure 12. Web loading times as a function of the number of semi-
persistent connections

(a) Google                                                                    (b) CNN                                                                     (c) Wiki
Figure 14. Queueing delays of HTTP requests in the request queue in the browser front-end

Figure 13. Enqueueing times of HTTP requests in each web site
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Google, CNN and Wiki, each of which showed a dense 
pattern in HTTP request arrival time. We also varied the 
number of semi-persistent connections to show the effect of 
the number of semi connections. As shown in the figure, 
when the number of connections increases, the queueing 
delays of many HTTP requests are reduced because multiple 
connections quickly consume the requests in the queue. 

3) Performance on Emulated 4G Network
The network configuration we used assumes a slow

mobile network, such as a 3G network, which is not a trivial
option in recent mobile network providers. In order to figure 
out whether our scheme is still useful on a high-speed 
network environment, such as a 4G network, we measured 
the web loading time on a 4G-emulated network 
environment. In this environment, the RTT between the 
mobile web browser and the proxy server is configured to 
54 ms and the RTT between the proxy and the web servers 
is 16 ms; the RTT between a mobile browser and a web 
server becomes 70 ms which is a typical performance of 4G 
network as depicted in [24]. 

Fig. 15 shows the web loading time of the five web sites. 
In the figure, the absolute web loading times are faster than 
those on the 3G-emulated network in Fig. 10(a) because of 
the decreased link delays. Our scheme, however, reduces the 
overall web loading time by 21% on average as compared to 
the native browser. Since the wireless delay is still higher 
than the WAN delay even in a high-speed mobile network, 
reducing the number of packet traversals on the slow part of 
communication paths results in the reduced web loading 
time.

V. RELATED WORK

Many optimization techniques in the protocol layer have 
been proposed for the sake of reducing delays in web 
browsing in a heterogeneous bandwidth network 
environment [17], [19-21]. Chakravorty et al. revealed that 
the optimizations in the application and session layer 
dominate the optimization techniques in other layers [21]. 
Our scheme also exploits the application and the session 
layer techniques to reduce web browsing delay. 

Feldmann et al. analyzed the effectiveness of proxy in the 
middle of a heterogeneous network environment [17]. Their 
trace-driven simulation showed that not only caching web 
objects but also caching connections in the proxy improves 

web browsing performance. Our scheme, however, proposes 
a two-tier web browsing architecture specialized for a 
mobile network albeit we use a persistent connection 
between the proxy and the mobile browser. In addition, we 
increase the effectiveness of HTTP pipelining by appending 
the static header fields at the proxy side.

Transparent proxy-based approaches have been proposed 
to improve the web browsing performance in wireless and 
cellular networks [20-21]. A transparent proxy modifies the 
main HTML file or DNS reply to make the browser forward 
subsequent HTTP requests to the proxy. Accordingly, 
subsequent web accesses benefit from the proxy. These 
approaches, however, require at least one DNS lookup and 
one TCP handshake for opening each web site. A few round 
trips are sufficient to increase the delay in web browsing in a 
long-RTT mobile network. In addition, HTML rewriting 
could increase the load on the proxy server. 

Our scheme can enable the smartphone to automatically 
set up a proxy server by the DHCP server in a mobile 
network provider when the smartphone accesses the mobile 
network. Therefore, our browser leverages the benefits of an 
explicit proxy configuration. The number of packets for 
establishment between the browser and the proxy server is 
equal to the maximum number of connections concurrently 
available in the browser regardless of the number of 
websites visited during web browsing. Also, all DNS 
lookups delegate to the proxy server.

Liu et al. proposed application-level compression 
techniques, called HTTP protocol aware compression 
(HPAC), that provide several HTTP header-specific 
encoding methods to reduce the delay in web browsing 
within mobile systems [19]. Their purpose is to reduce the 
size of HTTP requests and response messages transferred 
over the mobile network. Static binary encoding (SBE) and 
dynamic binary encoding (DBE) convert the encoding of 
HTTP header fields from ASCII code to binary code 
depending on HTTP header field characteristics. Along with 
the SBE and DBE, they introduced header delta encoding 
(HDE), which sends only the changed part of the HTTP 
header from a base header. Our scheme is a simplified 
version of HDE and consumes little CPU power for 
encoding. In addition, we demonstrated the increased 
effectiveness of HTTP pipelining in the tested web sites. 

Belshe et al. proposed a SPDY protocol [22] that is 
compatible to the HTTP protocol but improves web 
browsing latency by multiplexing multiple web transactions 
in one connection. By using this protocol, a mobile browser 
does not need to establish multiple connections and can 
minimize time-consuming connection establishment phases. 
This protocol is complementary to our approach because 
each web page loading incurs at least one round trip over the 
mobile network to establish the first connection. This round 
trip time can also be eliminated if our scheme is used. In 
addition, The SPDY protocol also provides header field 
compression to reduce the size of web requests. But, it does 
not eliminate the static header fields so that even if the static 
header fields are compressed, the compressed data still pass 
through the mobile network. Our scheme, however, 
eliminates the static header fields passing through the 
mobile network so that the number and size of packets can 
be reduced. 

Figure 15. Web loading delay of the five web sites in the native and TwoB 
on 4G network
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Preliminary study on the effect of two-tier web browser 
architecture was studied in [23]. This study, however, only 
focused on taking advantage of the persistent connection 
between a mobile browser and a proxy server in a mobile 
network provider. Our approach enhances the preliminary 
study in terms of the detailed architecture and the effective 
configuration of the two-tier browser architecture. In more 
detail, our approach tries to reduce latency associated with 
WAN by exploiting HTTP persistent connections with web 
servers and by maintaining DNS cache inside the TwoB 
proxy server. In addition, since the proxy server is not a 
general proxy server but a specialized proxy to a mobile 
browser, we sought to find the best configuration of the 
browser and the proxy server in terms of the number of 
persistent connections between the browser and the proxy 
by analyzing the packet processing time with varying the 
number of persistent connections for well-known web sites.

VI. CONCLUSION

In conventional web browser architecture, loading a web 
page usually incurs a large number of DNS lookups for 
resolving web server addresses, and TCP handshakes with 
web servers. Web browsing on mobile network is sluggish 
in comparison to browsing on wired or Wi-Fi networks 
because the RTT of a packet is relatively long on the mobile 
network and transferring many small packets for the DNS 
lookups and TCP handshakes is required for a web page 
loading instance.

In order to improve the mobile web browsing 
performance, we proposed a two-tier web browser 
architecture that consists of a mobile web browser and a 
proxy server. The proxy server is located at the joint 
between the WAN and mobile network, and the mobile web 
browser stays connected to the proxy server with the 
persistent connection defined in the HTTP 1.1 standard. The 
proxy server conducts DNS lookups and TCP handshakes as 
a representative of the mobile web browser. In addition to 
this, the proxy server adds HTTP header fields to HTTP 
requests on behalf of the web browser so that the HTTP 
header field data is stripped from the packets on the mobile 
network. With these approaches, the proposed architecture 
reduces both the number and size of mobile network packets.

We implemented a prototype of the proposed architecture 
on a commercial smartphone and evaluated it in terms of the 
number of mobile network packets and web page loading 
time. The experiment results showed that the proposed 
scheme reduced the number of mobile network packets by 
up to 42% and shortened the web page loading time by up to 
52% in comparison to the conventional web browser. 
Because the proposed architecture can be easily 
implemented with minor modifications to the existing proxy 
servers and mobile web browsers, we believe that our 
solution is practically applicable to the existing mobile 
network infrastructure and mobile electronics.
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