
Advances in Electrical and Computer Engineering Volume 14, Number 3, 2014

 3

1 Abstract—Web browsing on mobile networks is slow in
comparison to wired or Wi-Fi networks. Particularly, the
connection establishment phase including DNS lookups and
TCP handshakes takes a long time on mobile networks due to
its long round-trip latency. In this paper, we propose a novel
web browser architecture that aims to improve mobile web
browsing performance. Our approach delegates the connection
establishment and HTTP header field delivery tasks to a
dedicated proxy server located at the joint point between the
WAN and mobile network. Since the traffic for the connection
establishment and HTTP header fields delivery passes only
through the WAN between the proxy and web servers, our
approach significantly reduces both the number and size of
packets on the mobile network. Our evaluation showed that the
proposed scheme reduces the number of mobile network
packets by up to 42% and, consequently, the average page
loading time is shortened by up to 52%.

Index Terms—Browsers, Internet, Mobile computing, Web
services, World Wide Web.

I. INTRODUCTION

The data traffic generated by web browsing accounts for
the second largest portion of mobile network traffic [1].
Mobile web browser users, however, experience slower web
loading time in mobile network environments than in
conventional networks such as wired or Wi-Fi networks [2].

In mobile network environments, low bandwidth, long
round-trip time (RTT) and radio signal variation may
aggravate the web loading delay. Since many web content
providers are changing their web pages to become mobile-
friendly, with sizes between 100 to 200 kbytes, the
significance of the low bandwidth, however, is gradually
shrinking. In addition, the signal strength is considered to be
negligible to TCP downlink performance as long as it is
above a threshold [4]. Consequently, lots of researchers
have claimed that the long RTT of a mobile network is the
most significant inhibitor of fast mobile web browsing [3-4].

A web page usually has many embedded objects that
reside at other web sites. Loading a web object involves a
domain name system (DNS) lookup operation and a
transport control protocol (TCP) handshake during the
connection establishment phase between the mobile web
browser and the web server. The size of packets for DNS
lookups and TCP handshakes is generally small. However,
transferring them over a mobile network requires significant
time due to the long RTT. As a result, such frequent small-

1This research was supported by the Basic Science Research Program
through the National Research Foundation of Korea (NRF) funded by the
Ministry of Education (2013R1A6A3A01023894) and by the IT R&D
program of MKE/KEIT [10041244, SmartTV 2.0 Software Platform].

packet communications slow down the overall web page
loading time on mobile networks.

Meanwhile, according to the HTTP standard [6], many
web browsers embed additional header fields in HTTP
requests, such as Accept-Language, Accept-Charset, and
User-Agent. These fields are useful for web servers since
they can make better decision for responding the requests in
accordance with the content of the fields. But, most of the
header field data does not change frequently since these
fields represent the web browser. These header fields,
however, occupy precious mobile network bandwidth and
burden the load on the mobile network.

In this paper, we propose a novel mobile web browser
architecture that aims to reduce the page loading delay over
a mobile network. The proposed architecture consists of a
mobile web browser and its corresponding proxy server. The
proxy server resides at the joint point between the wide-area
network (WAN) and the mobile network. The mobile
browser stays connected to the proxy server with a persistent
connection, which is defined in the hypertext transfer
protocol (HTTP) 1.1 standard.

The mobile browser in our approach delegates the
connection establishment tasks to the proxy server. The
mobile browser no longer generates TCP handshakes and
DNS lookups once the connection between the mobile
browser and the proxy server is established, and the traffic
for the connection establishment phase passes only through
the high-speed WAN link between the proxy and web
servers. Consequently, the time delay caused by TCP
handshakes and DNS lookups over the mobile network is
eliminated from the web page loading time.

In addition, all HTTP requests from the mobile web
browser are forwarded to the proxy server and, in turn, the
proxy requests the web pages from web servers on behalf of
the mobile browser. Therefore, inclusion of the header fields
in the requests at the browser end is unnecessary in the
proposed architecture because the header fields can later be
appended by the proxy server. Appending the header fields
at the proxy server greatly reduces the size of the request
travelling through the mobile network. In addition, this
approach greatly leverages the advantage of HTTP
pipelining because the smaller a request is, the more
requests a packet delivers.

We evaluated the proposed scheme with the prototype
implementation. The prototype mobile web browser is built
upon the built-in web browser of Android, which is an open-
source mobile operating system and a simple proxy server is
implemented to be paired with the prototype mobile web
browser. The evaluation was conducted with various access

A Hybrid Web Browser Architecture
for Mobile Devices

Junguk CHO1, Euiseong SEO2, Jinkyu JEONG2

1School of Computing, University of Utah, UT 84112, USA
2Sungkyunkwan University, Gyeonggi-do 440-746, Republic of Korea

* Corresponding author: jinkyu@skku.edu

Digital Object Identifier 10.4316/AECE.2014.03001

1582-7445 © 2014 AECE

[Downloaded from www.aece.ro on Thursday, November 06, 2014 at 05:59:11 (UTC) by 115.145.179.186. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 14, Number 3, 2014

4

patterns over real world web pages from the five most
popular web sites [7-8].

The rest of the paper is organized as follows. Section 2
introduces technical background about web browsing on
mobile networks and the motivation for this research.
Section 3 presents our mobile web browser architecture, and
Section 4 analyzes the effectiveness of the prototype
implementation of the proposed scheme. After introducing
related work in Section 5, we conclude this paper in Section
6.

II. BACKGROUND AND MOTIVATION

In this section, we describe the web browsing process
from establishing connections to rendering a complete web
page. We also associate network characteristics with the
web browsing process from the perspective of web loading
performance. Then, we depict the motivation of this work by
demonstrating the adverse effect of long RTT in the mobile
network on web loading performance. Finally, we introduce
previous web browsing architectures and their pros and cons.

A. Background

Figure 1. Workflow of a web browser [9].

Fig. 1 shows the internal process of a web browser while
it is loading a web page [9]. The work flow begins when a
user inputs the uniform resource locator (URL) of a web
page in the browser window and pushes the load button of
the browser. The browser first sends a DNS query to resolve
the IP address of the URL. Then, the browser establishes a
TCP connection to the web server through three-way
handshaking. Both the DNS query and TCP three-way
handshaking are conducted in the connection establish phase.

After the browser establishes a TCP connection with the
web server, the browser requests the web page from the
server, and in turn receives the web page as the response
from the server. The browser parses the web page and
generates a document object model (DOM) tree, which
stores the information on the structure and data on the web
page.

A web page may have multiple embedded web objects
including JavaScripts, cascading style sheets (CSSs) and

images. Such embedded objects are sometimes located in
other remote web sites. The browser makes a request to an
appropriate web server when it finds an embedded web
object. Each web request for embedded objects is followed
by a new connection establishment phase when the browser
has no open connection with a corresponding web server.
The browser starts rendering of a web page when a
sufficient number of its embedded objects are fetched. When
all embedded objects are fetched and rendering of the web
page is complete, the web page loading instance finishes [9].

The components in the loading process can be classified
into two classes: network operations and local computations.
The gray boxes with dotted lines in Fig. 1 denote network
operations, and the white boxes represent local
computations.

Naturally, the network operations become performance
bottlenecks when the underlying network has low bandwidth
or long RTT whereas the performance of the local
computation operations is bounded by the CPU performance.
Lots of previous studies claimed that there are two possible
sources of performance bottlenecks for web page loading
operations over mobile network. One is poor network
performance [3-5], and the other is limited CPU capability
[10-13]. However, the improvement in web page loading
time from reducing the amount of computation is marginal
in current smartphone systems [4].

Although the performance of a mobile network is
determined by many factors such as its network bandwidth,
RTT and radio signal strength, improving the bandwidth of
an existing mobile network does not improve the browser
delay significantly [3-4]. Moreover, TCP downlink
throughput is not affected by the signal strength if it is above
some threshold [3]. Accordingly, the RTT of the network is
considered the most significant contributor to web browsing
performance over a mobile network [3-4].

B. Motivation
TABLE I. AVERAGE NUMBER OF PACKETS/SIZE OF DATA (IN

KBYTES) FOR LOADING MOBILE WEBSITES. THE NUMBER OF
PACKETS AND THE AMOUNT OF DATA FOR THE HTTP RESPONSE

IS OMITTED

Whole Page
DNS

Queries
TCP

Handshakes
Web Sites

TCP Closes
HTTP

Requests
Avg. Conn.

Reuse Counts
528.7/372.8 12.0/2.0 25.0/1.7

http://google.co.kr
33.3/2.1 15.4/10.0 7.1
80.0/30.2 6.0/1.3 9.5/0.7

http://xhtml.weather.com
12.7/0.8 9.0/5.9 5.8

433.7/209.0 11.1/2.3 57.0/4.0
http://cnnmobile.com

75.9/4.9 27.2/18.2 8.2
157.8/76.2 8.1/1.6 17.7/1.2

http://m.facebook.com
23.4/1.5 8.8/5.1 2.9

216.0/95.7 6.0/0.8 27.0/2.1
http://en.m.wikipedia.org

36.0/2.3 13.7/7.8 4.7
908.7/556.8 30.6/6.3 72.8/5.1

http://m.espn.go.com
96.7/6.2 40.5/25.7 16.2

In order to reveal the proportion of connection
establishment phases to the total network transmission for
web page loading, we analyzed the number of packets and
size of data transferred to load each of the six most popular
mobile web sites [7-8]. Table I shows the measured data and
classifies it into packets and data for DNS lookups, TCP
handshakes, TCP closes and HTTP requests. It also includes

[Downloaded from www.aece.ro on Thursday, November 06, 2014 at 05:59:11 (UTC) by 115.145.179.186. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 14, Number 3, 2014

 5

the number of connection reuses for an instance.
According to our measurement, the packets for the

connection establishment operations (TCP handshakes and
DNS lookups) take 12% of the total transferred packets.
However, the amount of data needed for the connection
establishment operations is negligible. Consequently, we
can conclude that the size of a packet for the connection
establishment operations is small in comparison to that for
web object transmission. Because the RTT of the mobile
network is slow, the time to finish the connection
establishment phase is determined by the number of
transferred packets rather than the amount of transferred
data. Thus it is expected that the connection establishment
phase significantly affects the overall web page loading time
a over mobile network due to its slow RTT. Also, the
proportion of packets for the connection establishment phase
is expected to increase as the amount of cached data in the
local storage increases. When many cached objects are hit,
the number of packets for loading a web page decreases and
the portion of the connection packets relatively increases.

To lessen the connection establishment overhead, the
HTTP 1.1 standard introduced the HTTP persistent
connection and HTTP pipelining. These two schemes are
currently provided by most commercial web browsers. The
HTTP persistent connection is a technique to keep a TCP
connection open after finishing an HTTP transaction, and to
reuse the open connection for the forthcoming HTTP
transactions instead of opening new connections. By default,
all connections are regarded as persistent under HTTP 1.1
and as non-persistent under HTTP 1.0. Depending on the
value of the connection header field, the web server closes
or maintains the connection after servicing the HTTP
request.

The built-in web browser of Android supports the HTTP
persistent connection like many others. The browser stores
an open persistent connection in the connection cache after
finishing the HTTP transaction if the used HTTP connection
supports the persistent connection (i.e., HTTP 1.1 or HTTP
1.0 with keep-alive). Otherwise, the browser closes the
connection. If a connection to a web server is necessary for
a new HTTP request, and there is a cached connection to the
web server in the connection cache, the browser reuses the
cached connection to avoid the connection establishment
overhead.

However, the number of reused connections is less than
half of the total number of HTTP requests according to our
analysis as shown in Table I. This is because a web page
usually has multiple embedded objects that are provided by
different web sites and new connections to the web sites are
necessary to access the embedded objects. In addition, the
limited capacity of the connection cache forces the
connection cache to discard cached connections that may be
reused in the near future. Even if the capacity of the browser
connection cache is unlimited, web servers may terminate
the open persistent connections when they become idle [14].
Accordingly, the effect of the persistent connection is
limited in practice, and newly established connections
struggle with the long RTT of the mobile network.

Meanwhile, HTTP pipelining enables web browsers to
issue HTTP requests without waiting for responses to the
previous requests. With HTTP pipelining, a web browser

packs multiple requests in a single TCP packet. This may
greatly reduce the number of packets and the number of new
connections for requesting web objects in the same web
server. HTTP pipelining also benefits from thread-level
parallelism at a server side since it overlaps processing of
simultaneous multiple requests.

Although HTTP pipelining is effective in improving the
web page loading delay, its actual effectiveness is affected
by two reasons as shown in Fig. 2.

First, the maximum transmission unit (MTU) size of the
underlying network limits the number of HTTP requests
packed in a single TCP packet. For example, the average
size of an HTTP request in Table I is approximately 650
bytes while the MTU size of a TCP packet is 1,500 bytes.
Therefore, only two or three HTTP requests are allowed to
be delivered by a TCP packet as depicted in Fig. 2(a).

(a) Small MTU size

(b) Embedded objects at different sites

Figure 2. Disturbance factors of HTTP pipelining

Second, HTTP pipelining is not applicable when
embedded web objects exist at multiple web sites because
HTTP pipelining pipelines multiple requests in a single TCP
connection. Accordingly, there are three embedded objects
in a web page and if their hosts are different, HTTP requests
for them cannot be packed in a single TCP packet as shown
in Fig. 2(b).

Considering that the RTT of a mobile network is quite
long, reducing the number of packets by exploiting the two
optimization techniques, persistent connection and request
pipelining, is crucial for improving web page loading time.
In this paper, we propose a web browser architecture that
minimizes the number of packets to load a web page by
maximizing the benefits from these two optimization
techniques.

C. Existing Mobile Web Browsers

In order to resolve the slow web page loading issue on a
mobile network, a few research results have been reported.
Many of them fall into two categories: thin-client
architecture and native browser architecture [15].

A thin-client web browser consists of a light-weight web
browser and a remote proxy server. A request for a web
page is forwarded to the proxy server by the browser, and
then the proxy fetches the web objects for the page, renders
the web page image, and sends the rendered image back to
the web browser. The browser is only responsible for
forwarding user inputs to the proxy and for displaying the
rendered web page images delivered from the proxy. This

[Downloaded from www.aece.ro on Thursday, November 06, 2014 at 05:59:11 (UTC) by 115.145.179.186. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 14, Number 3, 2014

6

architecture was initially suggested to overcome the limited
computing power of mobile devices [10-13]. In addition to
this, the thin-client scheme also lessens the web page
loading delay from the slow RTT to some degree since the
proxy server is in charge of establishing connections and
retrieving the embedded web objects.

However, the thin-client model has three critical
drawbacks. First, some web objects may not be properly
rendered, and dynamic web pages may not function
correctly because what the browser shows to users are
simply rendered images or preprocessed web pages [15]. For
example, an interactive feature of a web page written in a
script language will not react to user inputs because the
browser is ignorant of the existence of the script code.
Moreover, reloading or zooming in/out a part of a web page
is difficult to handle for the same reason. The interactivity of
mobile applications is important in the future internet [2].
Accordingly, the lack on supporting the interactivity can be
an obstacle to a better web browsing experience on the
mobile network.

Second, although it may reduce the number of small
packets, the thin-client architecture sometimes increases the
amount of data transferred over the mobile network.
According to experiments in related studies, the mobile
network data generated by a thin-client browser are typically
larger than those generated by a conventional web browser
[11-12], depending on the web page characteristics [13].
This mobile network traffic increase stems from the lack of
a local cache for storing web objects and the size of the
rendered web page images.

Finally, this approach increases burdens on the proxy
server. If the proxy server is overloaded it could adversely
affect the web browsing performance [15]. Because the
proxy is in charge of fetching web objects and rendering
web pages on behalf of its clients, the computation load to
the proxy is much heavier than the load on conventional
web proxy servers.

As the hardware performance of mobile devices rose to a
level sufficient to execute high-performance web browsing
engines (e.g., WebKit), many commodity mobile devices
chose to employ native web browsers. The native browser
handles every step of processing a web page request by
itself in order to provide an interactive and dynamic
browsing experience similar to that on a PC. Their interface,
including zoom, feels more natural and their page loading
time feels faster than their thin-client counterparts because
they draw intermediate renderings during page loading and
update the page being loaded continually [16].

Rapid improvements in processor performance together
with the spread of mobile-device-oriented web pages are
boosting the popularity of native web browsers in mobile
devices. However, as mentioned in Section 2.2, native
browsers generate a large number of small packets during
the connection establishment phases, and this severely limits
the page loading time over a mobile network where the RTT
is exceedingly slow.

The thin-client-based approach can reduce the number of
connection establishment phases over the mobile network.
In addition, the native browser is capable of providing an
outstanding user experience. Since both architectures have
different advantages, we propose a new browser architecture

that hybridizes both architectures.

III. TWO-TIER BROWSER ARCHITECTURE

In this paper, we propose a two-tier browser architecture
(TwoB) which minimizes web page loading time on a
mobile network. TwoB consists of a native mobile browser
on a mobile device and a proxy server on the border
between the WAN and the mobile network. The browser
processes all computations ranging from requesting the
content of a web page to rendering the page, and provides
user interaction via touch capabilities. Accordingly, end
users can experience natural interaction with interactive
features in web pages. The proxy server is an intermediary
for delivering request/response packets between the browser
and web servers, and also processes the connection
establishment phase on behalf of the browser. By
eliminating the connection establishment phases for all web
requests, web browsers do not need to wait for time-
consuming connection packet transfers on a mobile network.
In addition, from the nature of this request/response relay,
our proxy server can be lightly loaded and handle more
clients than the thin-client model does. The detailed
architecture of TwoB is depicted in Fig. 3.

Figure 3. TwoB Architecture

A. Overview

The proxy server in TwoB (denoted as the TwoB proxy)
consists of a browser back-end, a pipeline manager and a
connection manager. The browser back-end is a counterpart
of each mobile browser and relays web requests generated in
each mobile browser. Its main role is to maintain a persistent
connection between itself and a mobile browser. In addition,
it manages the static header field cache in order to reduce
the sizes of HTTP requests passing through the mobile
network; the use of a static header field cache is illustrated
in Section 3.4.

The connection manager manages connections between
the proxy server and web servers. It maintains a TCP
connection pool for web servers and provides connection
sharing for multiple mobile clients which are connected with
this proxy server. In addition, it provides a simple DNS
cache in order to reduce duplicate DNS queries when
multiple clients are requesting web pages from a small set of
web servers.

Finally, the pipeline manager is used to multiplex HTTP
requests between the browser back-end and the connection
manager. Its main role is to keep the sequence of responses
the same as the sequence of requests. Since our scheme
reduces the size of HTTP requests passing over the mobile
network, the number of packable HTTP requests in a single

[Downloaded from www.aece.ro on Thursday, November 06, 2014 at 05:59:11 (UTC) by 115.145.179.186. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 14, Number 3, 2014

 7

TCP packet is different between the mobile network and the
WAN. In addition, requests which are destined for different
web servers arrive at the same connection in the proxy.
Accordingly, the pipeline manager arbitrates HTTP
pipelining between the mobile network and the WAN.

Figure 4. Simplified mobile network architecture

When we deploy the TwoB proxy server in mobile
network, we should consider location of it. Fig. 4 shows
current mobile network architecture. Mobile network
generally uses GPRS tunneling protocol (GTP) not only to
transfer data packets but also to support handover and QoS
guarantee per user. These tunnels are depicted as T1 and T2
in Fig. 4. When a mobile device transmits a packet, the
packet is first encapsulated by radio access network (RAN)
and decapsulated by serving gateway (SGW) or serving
GPRS support node (SGSN). The packet is encapsulated
again by SGW or SGSN and decapsulated by packet data
network gateway (PGW) or gateway GPRS support node
(GGSN). Finally, the packet is forwarded to the internet.
Considering the GTP of mobile network, when our proxy
server resides in the middle of such tunnels, the packet
should require additional encapsulation and decapsulation
because the proxy works with decapsulated packets. In this
regard, the gateway of mobile network (e.g., PGW or
GGSN) is reasonable location of our TwoB proxy server
without the burden of additional packet en/decapsulation.

The following subsections explain the details of our
scheme from setting up the browser architecture to handling
web requests.

B. TwoB Initialization

The main advantage of our scheme is that our proposed
browser architecture does not need a full redesign of the
previous web browsing environment. Instead, our scheme
slightly modifies the browser in mobile clients in order to
make it specific to the proxy server in our architecture.

Figure 5. Assigning IP address of a proxy to devices

In order to seamlessly use our scheme, the module for
providing the configuration of the proxy server is added to
the DHCP server in the mobile network provider and the
module for automatically setting up the information is
installed in the mobile browser. When a smartphone
connects to the internet through the mobile network, the

configuration of the proxy server along with the
smartphone’s IP address and DNS server IP address is
assigned to the smartphone as shown in Fig. 5.

When the browser architecture is managed by a mobile
network provider, our scheme has three benefits. First, by
eliminating the connection establishment phase over the
mobile network, web loading time can be reduced for its
subscribers. Second, end-users do not need to manipulate
proxy setting in their smartphones. Since the configuration
of the proxy is automatically set whenever the mobile
network is available, users can easily exploit our scheme
without manipulating the detailed configuration of the proxy
server. Finally, from the perspective of the mobile network
provider, a reduced number of packets decrease its network
load.

The purpose of the proxy server in the proposed
framework is clearly different from that of the conventional
web proxy servers, which retrieves and stores frequently
accessed contents to reduce network traffic. The
conventional proxy servers are located in the client-end of
slow network so that they reduce the traffic via the slow
network and, in turn, provide fast response. However, the
proxy server in the TwoB architecture is placed in the
server-end of mobile network, which is significantly slower
than WAN. In addition, previous studies revealed that data
caching with a proxy server, which resides on the boundary
between mobile network and WAN is less effective for
reducing web browsing latency than connection caching
[17]. Therefore, we believe that, the benefit from content
caching by the proxy server in TwoB would be marginal to
the overall response time. This means that the proxy server
does not require large and fast storage devices and main
memory, thus can be manufactured at low cost in
comparison to the conventional proxy servers.

C. Exploitation of Persistent Connections

As described in Section 2.2, connection establishment
phases during web page loading become a performance
bottleneck when these phases are conducted on a long-RTT
mobile network. An HTTP persistent connection, which is
aimed at avoiding the connection establishment phase,
however, cannot be fully exploited in a mobile browsing
environment. Our scheme actively uses HTTP persistent
connections for a better web browsing experience as follows.

1) On Mobile Network
The main purpose of using a proxy server is to avoid

frequent connection establishment phases over the mobile
network. General proxy servers, such as Squid, are in charge
of only relaying HTTP requests and responses between web
browsers and web servers. Those are not in charge of
keeping connections with the browsers open. Accordingly,
the connections between the browser and the proxy cannot
be persistent when the proxy server disconnects them or
when the HTTP responses have no keep-alive flags. In this
regard, a new connection establishment phase can probably
occur at any time if a mobile browser uses a general proxy
server.

To avoid this unpredictable new connection establishment,
our scheme tightly bounds the proxy browser, especially the
browser back-end with a mobile browser. The connection

[Downloaded from www.aece.ro on Thursday, November 06, 2014 at 05:59:11 (UTC) by 115.145.179.186. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 14, Number 3, 2014

8

between the browser and the proxy is only disconnected
when a smartphone is powered off or is given a new IP
address. Except for these cases, the connection is always
kept open. We denote this type of connection as a semi-
permanent connection.

In order to make use of the semi-permanent connection
seamlessly, we use an HTTP persistent connection, which is
a standard feature in HTTP version 1.1. By using an HTTP
persistent connection, mobile browsers do not disconnect
the opened connection with the proxy server. When a TCP
connection is opened to fetch the main HTML page, the
persistent connection feature keeps the connection open for
succeeding HTTP transactions (for embedded objects such
as images, JavaScripts, etc.) to the same web server.
Accordingly, an additional connection establishment phase
is not required, and the response time for fetching embedded
objects is shortened. This feature is usually implemented in
many web browsers and servers so that our scheme can be
easily adopted into various native browsers, such as Firefox,
Safari, and Android built-in browsers, with few
modifications.

Instead of browser-side support, we need to manage the
proxy server to completely support the HTTP persistent
connection even if web servers do not support the persistent
connection. Since the feature is adapted in HTTP version 1.1,
many web browsers intentionally disconnect the TCP
connection when the version field of an HTTP response is
1.0 and the keep-alive in the connection field is unset. If the
proxy server relays such HTTP responses to the mobile
without any modification of the responses, the browser will
disconnect the connection even though the connection is
actually established with the proxy instead of the web server.
To cope with this issue, the connection manager in the proxy
server replaces the value of the connection header field of
each HTTP response with keep-alive if that value is close.
As a result, the browser naturally keeps the connection open
for subsequent HTTP transactions.

In the native browser approach, a persistent connection
can be disconnected for the following two reasons. First,
some browsers (e.g., Android built-in browser) terminate

persistent connections even if the HTTP version is 1.1. Due
to connection management cost, those browsers reap idle
TCP connections after a configured timeout has occurred. In
order to avoid this connection termination, we modified our
prototype browser to disable the timeout function.

Second, most browsers limit the number of opened TCP
connections below some threshold (e.g., eight entries in a
connection cache in the Android built-in browser). When
this connection cache is full, one connection is closed by a
cache replacement policy (e.g., least recently used policy) to
cache a new connection whose destination host is not found
in the cache. In our scheme, this phenomenon never happens
because the proxy server is the only destination host that the
browser communicates with.

Fig. 6 shows how the communication occurs between the
mobile browser, the proxy server, a DNS server and a web
server in a general mobile browsing environment and in our
scheme. In our scheme, the browser first initializes the
proxy server by establishing persistent TCP connections and
by sending the browser’s information to the proxy which
will be used for reducing the size of HTTP requests; Section
3.4 details the information. This phase occurs only once
when the smartphone uses the mobile network. For each
HTTP transaction, the HTTP request generated by the
browser is sent to the proxy server. The proxy server
retrieves the URL from the HTTP request and performs an
HTTP transaction with the corresponding web server by
resolving the IP address and by establishing a TCP
connection. It is important to note that this connection
establishment phase occurs only on the fast WAN. Then, the
proxy sends the HTTP request and receives its response
from a web server. Finally, the proxy server modifies the
HTTP response to make it support the HTTP persistent
connection and returns the modified response to the browser.
As compared to Fig. 6(a), our scheme shows a shorter HTTP
transaction phase as presented in Fig. 6(b) due to avoiding
the connection establishment phase. In Fig. 6(b), the DNS
query phase accounts for a large portion of time. But,
successive transactions for embedded web objects that are
hosted in the same web server do not require DNS query

(a) In a general mobile browsing environment (b) In our scheme
Figure 6. The procedure for processing an HTTP request

[Downloaded from www.aece.ro on Thursday, November 06, 2014 at 05:59:11 (UTC) by 115.145.179.186. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 14, Number 3, 2014

 9

phases.
Maintaining the semi-persistent connection does not

affect the power consumption of a mobile device. The radio
device is only turned on when it has some packets to
transmit. Otherwise, it turns into a low-power state [25].

An open TCP connection can be disconnected when its
associated NAT (network address translation) entry is
removed from the NAT table of the mobile network carrier
[26]. This, however, is an easily resolvable issue. The carrier
can simply postpone the removal of NAT entries associated
with the semi-persistent connections since the semi-
persistent connection is a carrier-supported feature to
provide better web browsing experience to its customers.

2) On WAN
In our browsing environment, the web browsing

experience is not only determined by the mobile network
side, but is also affected by the WAN side. Accordingly, it is
important to optimize connections between the proxy server
and web servers. In our architecture, the connection
manager is in charge of managing this kind of connection.

The connection manager maintains two caches, a TCP
connection cache and a simple DNS cache. The former is
aimed at reducing TCP connection establishment phases by
exploiting the HTTP persistent connection standard, and the
latter is to reduce DNS query overhead. When an HTTP
transaction is forwarded from the browser back-end, the
connection manager looks up the DNS cache in order to
reduce duplicated DNS queries. The DNS cache follows the
DNS caching policy standard [18]. When the IP address of a
web server is unknown, the connection manager sends the
DNS query to an upper-level DNS server and stores the IP
address in the DNS cache.

When the connection manager unveils the IP address of
the web server to send an HTTP transaction, it should find
out a cached (opened) connection in the connection cache. If
this is not found, it opens a new connection with the desired
web server. Then it forwards the HTTP request to the web
server. When corresponding responses are transferred and if
the web server supports the HTTP persistent connection
standard, the connection is stored in the connection cache
for further reuse.

Although our proxy server manages the connection cache,
many web servers disconnect opened (idle) connections
after some period. Accordingly, the connection manager
only maintains opened connections until web servers
disconnect them. Previous work revealed that 70-80% of
real-world web servers keep an idle connection open for at
least one second, and 65-76% of them for five seconds [15].
From this result, we believe that caching opened
connections in the proxy server will help reduce the web
loading delay when multiple mobile clients are managed in
the proxy server.

D. Exploitation of Request Pipelining

As described in Section 2.2, the HTTP pipelining feature
in HTTP 1.1 provides a way of increasing the
responsiveness of HTTP transactions by sending multiple
HTTP requests in a single TCP connection without
receiving the previous responses. The feature also enables a
single TCP packet to ship multiple HTTP requests.

Accordingly the number of round trips for sending HTTP
requests is decreased. The effectiveness of the pipelining,
however, is degraded by the two factors described in Section
2.2: the size and the destination of HTTP requests.

In our browser architecture, we have an opportunity to
increase the effect of HTTP pipelining. From the traced
packets in Table I, we found that a substantial part of HTTP
requests are invariant [19]. Those static header fields are
Accept-Language, Accept-Charset, User-Agent, and so on;
these fields usually specify the information for the mobile
browser. Accordingly, the static header fields can be omitted
in HTTP requests when the request is transferred to the
proxy server. Instead, the omitted fields can be appended in
the proxy server since the proxy server has a browser back-
end that is specific to a mobile client. We denote the HTTP
requests without static header fields as incomplete HTTP
requests and HTTP requests having static header fields
appended in proxy as complete HTTP requests.

The browser back-end in the proxy server in turn is
responsible for appending the omitted static header fields.
When the semi-permanent connection between the browser
and the proxy is established, the browser sends its static
header fields to the proxy. The browser back-end stores the
static header fields in the static header cache by using the
browser’s IP address as a key. Subsequent HTTP requests
sent from a browser are complemented by the proxy server
using the stored static header fields. When the browser
disconnects the semi-permanent connection for some reason
(e.g., power off, assigning a new IP address, etc.) the stored
static header fields for the browser are discarded.

(a) Pack more HTTP requests

(b) Pack HTTP requests with different hosts

Figure 7. Improving the effectiveness of HTTP pipelining

By using this approach, the size of HTTP requests on the
mobile network can be reduced, and the smaller the size of
the HTTP requests is, the more HTTP requests can be
packed into a single TCP packet. Therefore, the
effectiveness of HTTP pipelining as limited by the size of
the HTTP request can be improved. Even if the number of
TCP packets holding HTTP requests is not decreased, the
amount of data on the mobile network is still reduced. Fig.
7(a) shows that five HTTP requests can be packed in a
single TCP packet in our architecture.

The second obstacle to HTTP pipelining depicted in
Section 2.2, different destination hosts of HTTP requests, is
naturally resolved in our browser architecture. When a
browser directly connects to web servers, each HTTP

[Downloaded from www.aece.ro on Thursday, November 06, 2014 at 05:59:11 (UTC) by 115.145.179.186. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 14, Number 3, 2014

10

request with different hosts is sent to corresponding web
servers through separate TCP packets. In our scheme,
however, all HTTP requests are sent via the semi-permanent
connection whose other end is the proxy server. Accordingly,
the limitation caused by different hosts for HTTP requests is
naturally resolved as shown in Fig. 7(b).

The side effect of using HTTP pipelining in our scheme is
that when a browser requests multiple objects in different
hosts, incomplete HTTP requests are sent in a single TCP
connection, but the complete HTTP requests are sent to web
servers in different TCP connections. Each web server may
return HTTP responses in a different order due to their
different levels of load, RTT and link speed. The standard of
HTTP pipelining, however, is to keep the order of responses
the same as the order of requests [6]. Accordingly, it is
essential to adjust the sequence of HTTP responses to the
browser front-end in the proxy server even though the
responses from web servers arrive in different orders. In
addition, if multiple responses from multiple web servers are
the answers of requests from the same semi-persistent
connection, the responses should be returned through that
semi-persistent connection.

To cope with this problem, the pipeline manager in the
proxy server arbitrates the sequence of requests and
responses to make the order of responses the same as that of
the requests. For example, a web browser front-end requests
three objects, A, X and B. A and B are hosted in the same
web server while object X is in a different web server. When
the response for X first arrives, this response is not
forwarded to the browser front-end until the responses for A
and B arrive. Fig. 8 shows this response arbitration in the
pipeline manager when the requests are sent as shown in Fig.
8(b).

Finally, the pipeline manager exploits HTTP pipelining
supports of web servers. Even if WAN is fast in terms of
link speed and RTT, reducing the overhead of network
layers such as IP and data-link is important. Accordingly,
the pipeline manager relays pipelined requests from the
browser front-end to web servers.

IV. EVALUATION

A. Experimental Setup

We implemented the prototype of the web browser front-
end based on the default web browser of the Android OS,
and the TwoB proxy server based on Twisted, an event-
driven web server framework. The Android OS with the
prototype web browser was ported to a commercial
smartphone for evaluation.

In order to emulate the web browsing over a mobile
network, we set up the evaluation environment as shown in
Fig. 9. Two Linux servers are used: (1) one emulates a
mobile network provider, and (2) the other performs as a
DNS server and web servers. The former node provides a
Wi-Fi access point to the smartphone and runs a DHCP

server and the TwoB proxy server. When the smartphone
connects to the access point, the server assigns an IP address
and provides the information for the TwoB proxy server and
the DNS server in the second node. The second node also
runs the Apache web server and provides multiple virtual
hosts simulating different web sites. Since the DNS server
returns the IP address of the virtual web servers for the DNS
queries, every web request from the smartphone goes to our
web servers. In each virtual web server, the time-out period
of an idle connection is five seconds by default.

We configured the Wi-Fi network between the proxy and
the smartphone to imitate the characteristics of 3G network
services in Korea. In a series of experiments, the mobile
network showed approximately 147.3 kbps and 13.4 kbps
for downlink and uplink bandwidth, respectively, and the
average RTT to various web sites was 265 ms. These
characteristics are similar to those in a prior study [3]. Based
on this observation, we injected artificial delay into the Wi-
Fi network between the smartphone and the access point as
shown in Table II. In addition, the two Linux machines have
very low RTT compared with the WAN environment. In
order to emulate the WAN, we injected 50 ms of RTT into
the network link between the two machines as shown in
Table II [3].

TABLE II. NETWORK CONFIGURATION FOR EVALUATION
Network RTT(ms) Uplink(kbps) Downlink(kbps)
Emulated

3G network
200 50 250

Emulated WAN 50 - -

Many web sites use dynamic web pages whose contents
change by time and by accesses. Accordingly, both the
number of packets and the size of transferred data for the
same web site greatly vary during the evaluation. In order to
eliminate these runtime variations, we replicated the
contents of the web sites and used them in our evaluation.
Detailed information about the replicated web pages is
summarized in Table III.

TABLE III. AVERAGE NUMBER OF PACKETS/SIZE OF DATA
(KBYTES) FOR LOADING REPLICATED WEB PAGES IN OUR

EVALUATION. THE LAST COLUMN OF EACH WEB SITE DENOTES
THE PORTIONS OF PACKETS/SIZE COMPARED TO THE ORIGINAL

WEB PAGES SHOWN IN TABLE I
Whole Page DNS Queries TCP HandshakesWeb

Sites TCP Closes HTTP Requests Portion to Original
457/346.3 10/0.9 21/1.5Google

28/1.8 11/5.8 82%/74%
53/15.7 4/0.3 9/0.6Weather
12/0.8 5/2.5 76% / 61%

275/127.1 14/1.2 33/2.3CNN
44/2.9 25/13.1 79% / 61%

Facebook 122/72.9 6/0.5 9/0.6

Figure 9. Evaluation system configuration

Figure 8. The procedure of processing HTTP response in our scheme

[Downloaded from www.aece.ro on Thursday, November 06, 2014 at 05:59:11 (UTC) by 115.145.179.186. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 14, Number 3, 2014

 11

12/0.8 6/2.8 64%/58%
199/104.2 10/0.9 19/1.3Wiki

25/1.6 12/6.4 97%/87%

B. Evaluation Results

In our evaluation, we measured the number of packets,
the size of transferred data and web loading time to access a
web site. The former two results are measured at the access
point using tcpdump. The web loading time is the elapsed
time from when a user clicks the load button to when the
progress bar of the browser hits 100% [4]. To measure the
web loading time, the browser was modified to record time
stamps for its internal operations.

At every iteration, the local cache of the browser is
flushed (this leads to flushing connection caches together)
and all web sites are sequentially visited with a time interval
of 30 seconds. The results are average values obtained from
fifty iterations. Native denotes the results from the
unmodified native browser for comparison and TwoB
denotes the results from our proposed scheme.

1) Native vs TwoB
In this subsection, we measured the web loading time of

our scheme in comparison with that of the Android native
browser. Fig. 10 shows the web loading delay, the number
of packets passed through the mobile network and the
amount of data passed in both schemes, native browser and
our scheme. As shown in Fig. 10(a), our scheme reduced
web loading time by 38-52% compared to the native
browser. Since all packets for connection establishment and
close are handled in the TwoB proxy, our scheme eliminates
the packets in this category as illustrated in Fig. 10(b). As
compared to the native browser, our scheme reduces the
number of packets by 11-41%. The reduction in the number
of packet is not as significant as the reduction in the web
loading time because the connection packets and DNS
packets are synchronous to the web loading process. When
these packets are not complete, no further processes can
progress. Accordingly, by reducing these synchronous
packets, the browser can quickly progress on fetching web
objects.

Fig. 10(c) shows the amount of data passed through the
mobile network. The main cause of data reduction is due to
omitted connection packets and reduced size of HTTP
requests, hence incomplete HTTP requests. But, since the
amount of data for connection management and the HTTP
request is tiny compared to the size of HTTP responses, the
data size reduction is not as great as the reduction in the

number of packets.
Many previous studies revealed that the web browsing

experience is largely correlated not with the bandwidth of
the mobile network but with its long RTT [3-4]. Our
evaluation results are consistent with the results found in
previous studies. The main benefit of our browser
architecture is eliminating unnecessary connection-related
packets by maintaining a semi-persistent connection.
Accordingly, our scheme does not incur several round trips
for connection-related packets as depicted in Fig. 10(b).
Although the amount of data reduction by using our scheme
is negligible, our scheme reduced web browsing latency by
half by reducing the number of round trips.

As compared to the result in our preliminary study [23],
the web loading time of the native browser increased by
1100 ms on average due to injecting realistic WAN delay.
Our scheme, however, showed still decreased web loading
time by 60 ms on average. Since the TwoB proxy maintains
a local DNS cache and exploits HTTP persistent
connections with web servers, these features help to offset
the increased WAN delay to the measured web loading time.

Now, we measured the effect of appending static header
fields in the TwoB proxy. This operation is denoted as HDE
(header delta encoding). Fig. 11 shows the size of data
transferred through the mobile network normalized to the
Native browser. As shown in the figure, the effect of HDE
resulted in a data size reduction of 2-19% compared to the
native browser. The effect of data reduction outperforms
over the effect of only using the semi-persistent connection
(denoted as w/o HDE in Fig. 11) between the browser front-
end and back-end (1-9%).

In addition, exploiting HDE can increase the number of
packets that can be packed into one packet. Table IV shows

(a) Web loading delay (b) The number of packets (c) The size of data
Figure 11. Web loading delay, the number of packets passed through the mobile network and the amount of data passed in the native browser and TwoB

Figure 10. Normalized transferred data size on the mobile network when
static HTTP header fields are complemented in the TwoB proxy

[Downloaded from www.aece.ro on Thursday, November 06, 2014 at 05:59:11 (UTC) by 115.145.179.186. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 14, Number 3, 2014

12

the average size of HTTP requests in each web site. As
depicted in the table, the requests including static header
fields (complete HTTP requests) are 544 bytes in size on
average. However, the average size of dynamic fields is only
283 bytes. This result means that omitting static header
fields can increase the number of packable requests from 2.7
to 5.3 in the tested cases. Accordingly, the number of
request packets in the mobile network can be reduced when
our scheme is used by a mobile network provider.

TABLE IV. AVERAGE PACKET SIZE OF COMPLETE AND
INCOMPLETE HTTP REQUESTS IN BYTES

Sites
Complete

HTTP reqs
Incomplete
HTTP reqs

Google 540 270
Weather 511 245

CNN 641 350
Facebook 479 213

Wiki 598 339
Average 554 283

of reqs in on MTU (1500 bytes) 2.7 5.3

2) Effects of TwoB Proxy Configuration
Although our browser architecture can improve web

browsing, it is important to find the best configurations of
our TwoB proxy and the browser front-end. The most
important parameter is the number of semi-persistent
connections since if the number of connections per browser
front-end is large, the number of browsers that can be
handled by a TwoB proxy is limited.

Fig. 12 shows the web page loading times with varying
numbers of semi-persistent connections. From the figure,
two different results can be found: no loading time reduction
and loading time reduction when the number of connections
increases. The results of Facebook and Weather can be
categorized in the former result, and those of Google, CNN

and Wiki are in the latter one. In addition, the loading times
of the three web sites are mostly saturated when the number
of semi connections is four.

In order to reveal the reasons for the results in Fig. 12, we
conducted additional experiments. Fig. 13 shows the time at
which each HTTP request is enqueued in the HTTP request
queue in the browser front-end. The x-axis shows the
serialized HTTP requests in each web site and the y-axis
shows the time each HTTP request is queued in the HTTP
requests queue in the browser front-end since the web page
loading began. As shown in the figure, the request arrival
patterns of two web sites, Facebook and Weather, are sparse.
Hence, both web sites have a few HTTP requests and each
request arrives with a long time interval. Accordingly, the
chance to exploit additional connections is low since the
time gap is large enough to complete previous HTTP
transactions.

The three web sites, Google, CNN and Wiki, however,
have many HTTP objects and request tens of HTTP requests
or more. Their arrival patterns are denser than the other two
web sites. This means that more than five requests are
queued at mostly the same time. Accordingly, exploiting
more connections can lead to a reduction of queue sojourn
time.

In order to validate our analysis, we also measured the
queueing delay of HTTP requests in the browser’s HTTP
request queue. The queueing delay of an HTTP request is
the time between when the request arrives at the queue and
when the request is transferred to the TwoB proxy.
Accordingly, when multiple objects are queued and if the
throughput of the queue consumer, the number of semi-
persistent connections in our case, is low, the objects will
have long queueing delays.

Fig. 14 shows the queueing delays for the three web sites,

Figure 12. Web loading times as a function of the number of semi-
persistent connections

(a) Google (b) CNN (c) Wiki
Figure 14. Queueing delays of HTTP requests in the request queue in the browser front-end

Figure 13. Enqueueing times of HTTP requests in each web site

[Downloaded from www.aece.ro on Thursday, November 06, 2014 at 05:59:11 (UTC) by 115.145.179.186. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 14, Number 3, 2014

 13

Google, CNN and Wiki, each of which showed a dense
pattern in HTTP request arrival time. We also varied the
number of semi-persistent connections to show the effect of
the number of semi connections. As shown in the figure,
when the number of connections increases, the queueing
delays of many HTTP requests are reduced because multiple
connections quickly consume the requests in the queue.

3) Performance on Emulated 4G Network
The network configuration we used assumes a slow

mobile network, such as a 3G network, which is not a trivial
option in recent mobile network providers. In order to figure
out whether our scheme is still useful on a high-speed
network environment, such as a 4G network, we measured
the web loading time on a 4G-emulated network
environment. In this environment, the RTT between the
mobile web browser and the proxy server is configured to
54 ms and the RTT between the proxy and the web servers
is 16 ms; the RTT between a mobile browser and a web
server becomes 70 ms which is a typical performance of 4G
network as depicted in [24].

Fig. 15 shows the web loading time of the five web sites.
In the figure, the absolute web loading times are faster than
those on the 3G-emulated network in Fig. 10(a) because of
the decreased link delays. Our scheme, however, reduces the
overall web loading time by 21% on average as compared to
the native browser. Since the wireless delay is still higher
than the WAN delay even in a high-speed mobile network,
reducing the number of packet traversals on the slow part of
communication paths results in the reduced web loading
time.

V. RELATED WORK

Many optimization techniques in the protocol layer have
been proposed for the sake of reducing delays in web
browsing in a heterogeneous bandwidth network
environment [17], [19-21]. Chakravorty et al. revealed that
the optimizations in the application and session layer
dominate the optimization techniques in other layers [21].
Our scheme also exploits the application and the session
layer techniques to reduce web browsing delay.

Feldmann et al. analyzed the effectiveness of proxy in the
middle of a heterogeneous network environment [17]. Their
trace-driven simulation showed that not only caching web
objects but also caching connections in the proxy improves

web browsing performance. Our scheme, however, proposes
a two-tier web browsing architecture specialized for a
mobile network albeit we use a persistent connection
between the proxy and the mobile browser. In addition, we
increase the effectiveness of HTTP pipelining by appending
the static header fields at the proxy side.

Transparent proxy-based approaches have been proposed
to improve the web browsing performance in wireless and
cellular networks [20-21]. A transparent proxy modifies the
main HTML file or DNS reply to make the browser forward
subsequent HTTP requests to the proxy. Accordingly,
subsequent web accesses benefit from the proxy. These
approaches, however, require at least one DNS lookup and
one TCP handshake for opening each web site. A few round
trips are sufficient to increase the delay in web browsing in a
long-RTT mobile network. In addition, HTML rewriting
could increase the load on the proxy server.

Our scheme can enable the smartphone to automatically
set up a proxy server by the DHCP server in a mobile
network provider when the smartphone accesses the mobile
network. Therefore, our browser leverages the benefits of an
explicit proxy configuration. The number of packets for
establishment between the browser and the proxy server is
equal to the maximum number of connections concurrently
available in the browser regardless of the number of
websites visited during web browsing. Also, all DNS
lookups delegate to the proxy server.

Liu et al. proposed application-level compression
techniques, called HTTP protocol aware compression
(HPAC), that provide several HTTP header-specific
encoding methods to reduce the delay in web browsing
within mobile systems [19]. Their purpose is to reduce the
size of HTTP requests and response messages transferred
over the mobile network. Static binary encoding (SBE) and
dynamic binary encoding (DBE) convert the encoding of
HTTP header fields from ASCII code to binary code
depending on HTTP header field characteristics. Along with
the SBE and DBE, they introduced header delta encoding
(HDE), which sends only the changed part of the HTTP
header from a base header. Our scheme is a simplified
version of HDE and consumes little CPU power for
encoding. In addition, we demonstrated the increased
effectiveness of HTTP pipelining in the tested web sites.

Belshe et al. proposed a SPDY protocol [22] that is
compatible to the HTTP protocol but improves web
browsing latency by multiplexing multiple web transactions
in one connection. By using this protocol, a mobile browser
does not need to establish multiple connections and can
minimize time-consuming connection establishment phases.
This protocol is complementary to our approach because
each web page loading incurs at least one round trip over the
mobile network to establish the first connection. This round
trip time can also be eliminated if our scheme is used. In
addition, The SPDY protocol also provides header field
compression to reduce the size of web requests. But, it does
not eliminate the static header fields so that even if the static
header fields are compressed, the compressed data still pass
through the mobile network. Our scheme, however,
eliminates the static header fields passing through the
mobile network so that the number and size of packets can
be reduced.

Figure 15. Web loading delay of the five web sites in the native and TwoB
on 4G network

[Downloaded from www.aece.ro on Thursday, November 06, 2014 at 05:59:11 (UTC) by 115.145.179.186. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 14, Number 3, 2014

14

Preliminary study on the effect of two-tier web browser
architecture was studied in [23]. This study, however, only
focused on taking advantage of the persistent connection
between a mobile browser and a proxy server in a mobile
network provider. Our approach enhances the preliminary
study in terms of the detailed architecture and the effective
configuration of the two-tier browser architecture. In more
detail, our approach tries to reduce latency associated with
WAN by exploiting HTTP persistent connections with web
servers and by maintaining DNS cache inside the TwoB
proxy server. In addition, since the proxy server is not a
general proxy server but a specialized proxy to a mobile
browser, we sought to find the best configuration of the
browser and the proxy server in terms of the number of
persistent connections between the browser and the proxy
by analyzing the packet processing time with varying the
number of persistent connections for well-known web sites.

VI. CONCLUSION

In conventional web browser architecture, loading a web
page usually incurs a large number of DNS lookups for
resolving web server addresses, and TCP handshakes with
web servers. Web browsing on mobile network is sluggish
in comparison to browsing on wired or Wi-Fi networks
because the RTT of a packet is relatively long on the mobile
network and transferring many small packets for the DNS
lookups and TCP handshakes is required for a web page
loading instance.

In order to improve the mobile web browsing
performance, we proposed a two-tier web browser
architecture that consists of a mobile web browser and a
proxy server. The proxy server is located at the joint
between the WAN and mobile network, and the mobile web
browser stays connected to the proxy server with the
persistent connection defined in the HTTP 1.1 standard. The
proxy server conducts DNS lookups and TCP handshakes as
a representative of the mobile web browser. In addition to
this, the proxy server adds HTTP header fields to HTTP
requests on behalf of the web browser so that the HTTP
header field data is stripped from the packets on the mobile
network. With these approaches, the proposed architecture
reduces both the number and size of mobile network packets.

We implemented a prototype of the proposed architecture
on a commercial smartphone and evaluated it in terms of the
number of mobile network packets and web page loading
time. The experiment results showed that the proposed
scheme reduced the number of mobile network packets by
up to 42% and shortened the web page loading time by up to
52% in comparison to the conventional web browser.
Because the proposed architecture can be easily
implemented with minor modifications to the existing proxy
servers and mobile web browsers, we believe that our
solution is practically applicable to the existing mobile
network infrastructure and mobile electronics.

REFERENCES

[1] Ericsson, Traffic and market data report, Tech. Rep., Nov. 2011.
[2] P. JäPpinen, R. Guarneri, and L. M. Correia, “An applications

perspective into the future internet,” J. Netw. Comput. Appl., vol. 36,
no. 1, pp. 249-254, Jan. 2013.

[3] J. Huang, Q. Xu, B. Tiwana, Z. Mao, M. Zhang, and P. Bahl,
“Anatomizing application performance differences on smartphones,”

In Proc. 8th Int. Conf. Mobile Systems, Applications, and Services,
pp. 165–178, 2010.

[4] Z. Wang, F. Lin, L. Zhong, and M. Chishtie, “Why are web browsers
slow on smartphones?,” in Proc. 12th workshop Mobile Computing
Systems and Applications, pp. 91–96, 2011.

[5] H. Falaki, D. Lymberopoulos, R. Mahajan, S. Kandula, and D. Estrin,
“A first look at traffic on smartphones,” in Proc. 10th Int. Conf.
Internet Measurement, pp. 281–287, 2010.

[6] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach,
and T. Berners-Lee, Hypertext transfer protocol–HTTP/1.1, Internet
Request for Comments (RFC 2616), Jun. 1999.

[7] Nielsen.com, Top mobile phones, sites and brands for 2009, 2009
[8] N. Thiagarajan, G. Aggarwal, A. Nicoara, D. Boneh, and J. Singh,

“Who killed my battery?: analyzing mobile browser energy
consumption,” in Proc. 21st Int. Conf. World Wide Web, pp. 41–50,
2012.

[9] K. Kim, H. Yang, C. Kim, and S. Kim, “A parallel approach to
mobile web browsing,” in Proc. Int. Conf. Mobile Computing,
Applications, and Services, pp. 338–344, 2012.

[10] A. Fox, I. Goldberg, S. Gribble, D. Lee, A. Polito, and E. Brewer,
“Experience with top gun wingman: A proxy-based graphical web
browser for the 3com palmpilot,” in Proc. IFIP Int. Conf. Distributed
Systems Platforms and Open Distributed Processing, pp. 407–424,
2009.

[11] J. Kim, R. Baratto, and J. Nieh, “pTHINC: a thin-client architecture
for mobile wireless web,” In Proc. 15th Int. Conf. World Wide Web,
pp. 143–152, 2006.

[12] H. Shen, Z. Pan, H. Sun, Y. Lu, and S. Li, “A proxy-based mobile
web browser,” in Proc. Int. Conf. Multimedia, pp. 763–766, 2010.

[13] B. Zhao, B. Tak, and G. Cao, “Reducing the delay and power
consumption of web browsing on smartphones in 3G networks,” in
Proc. Int. Conf. Distributed Computing Systems, pages 413–422,
2011.

[14] Z. Al-Qudah, M. Rabinovich, and M. Allman, “Web timeouts and
their implications,” In Passive and Active Measurement, pp. 211–221,
2010.

[15] E. Hernandez, “War of the mobile browsers,” Pervasive computing,
IEEE, vol. 8, no. 1, pp. 82–85, 2009.

[16] B. Zhao, Q. Zheng, G. Cao, and S. Addepalli, “Energy-Aware Web
Browsing in 3G Based Smartphones,” in Proc. 33rd Int. Conf.
Distributed Computing Systems, pp. 165-175, 2013.

[17] A. Feldmann, R. Caceres, F. Douglis, G. Glass, and M. Rabinovich,
“Performance of web proxy caching in heterogeneous bandwidth
environments,” in Proc. 18th Int. Conf. Computer Communications,
volume 1, pp. 107–116, 1999.

[18] D. Barr, Common DNS operational and configuration errors, Internet
Request for Comments (RFC 1912), Feb. 1996.

[19] Z. Liu, Y. Saifullah, M. Greis, and S. Sreemanthula, “HTTP
compression techniques,” in Proc. Conf. Wireless Communications
and Networking, vol. 4, pp. 2495–2500, 2005.

[20] P. Rodriguez, S. Mukherjee, and S. Ramgarajan, “Session level
techniques for improving web browsing performance on wireless
links,” in Proc. 13th Int. Conf. World Wide Web, pp. 121–130, 2004.

[21] R. Chakravorty, S. Banerjee, P. Rodriguez, J. Chesterfield, and I. Prat,
“Performance optimizations for wireless wide-area networks:
Comparative study and experimental evaluation,” in Proc. 10th Annu.
Int. Conf. Mobile Computing and Networking, pp. 159–173, 2004.

[22] M. Belshe, and R. Peon, SPDY Protocol, 2012
[23] J. Cho, J. Jeong, and E. Seo, “TwoB: a two-tier web browser

architecture optimized for mobile network,” in Proc. 10th Int. Conf.
Advances in Mobile Computing & Multimedia, pp. 267-270, Dec.
2012.

[24] J. Huang, F. Qian, Y. Guo, Y. Zhou, Q. Xu, Z. M. Mao, S. Sen, and
O. Spatscheck, “An in-depth study of LTE: effect of network protocol
and application behavior on performance,” in Proc. ACM
SIGCOMM, pp. 363-374, 2013.

[25] F. Qian, S. Sen, and O. Spatscheck, “Silent TCP connection closure
for cellular networks,” in Proc. ACM Conf. Emerging Networking
Experiments and Technologies, pp. 211-216, 2013.

[26] Z. Wang, Z. Qian, Q. Xu, Z. M. Mao. M. Zhang, “An untold story of
middleboxes in cellular networks,” in Proc. ACM SIGCOMM, pp.
374-385, 2011.

[Downloaded from www.aece.ro on Thursday, November 06, 2014 at 05:59:11 (UTC) by 115.145.179.186. Redistribution subject to AECE license or copyright.]

