DRACO:
A Deduplicating FTL for Tangible Extra Capacity

Bon-Keun Seo, Joonwon Lee, Euiseong Seo

Abstract—The rapid random access of SSDs enables efficient searching of redundant data and their deduplication. However, the
space earned from deduplication cannot be used as permanent storage because it must be reclaimed when deduplication is cancelled
as a result of an update to the deduplicated data. To overcom this limitation, we propose a novel FTL scheme that enables the gained
capacity to be used as permanent storage space for the file system layer. The proposed approach determines the safe amount of
gained capacity that can be provided to the upper layer based on the compression rate prediction scheme. It then secures the required
space by compressing cold data when capacity overflow occurs from broken deduplication. Our evaluation with a Git repository showed
that the file system obtained approximately 69% additional capacity by the proposed scheme.

Index Terms—SSD, flash memory, deduplication, compression, FTL, file systems, over-provisioning

1 INTRODUCTION

Althugh the capacity of flash memory solid state disks (SSDs)
has rapidly increased because of the improved density of flash
memory cells and use of multi-level cells (MLCs), the capacity-
to-cost rate of SSDs remains more than ten times higher than
that of hard disks. Therefore, the capacity issue continues to
be of primary concern to both SSD vendors and consumers.

Most large-volume data being housed in storage devices
have a high degree of redundancy; moreover, deduplication
of such redundant data by the host-side operating system
can secure additional storage space [1]. However, host-side
deduplication has major performance drawbacks associated
with consuming processor and I/O bus resources.

The rapid random access of SSDs enables the implementa-
tion of a deduplication scheme at the flash translation layer
(FTL) within SSDs [2], [3]. However, it is technically difficult to
provide the space acquired from deduplication to file systems
for permanently storing data because the extra capacity must
be reclaimed when deduplication is cancelled by an update of
the deduplicated data. This issue is more challenging for the
SSD-side deduplication scheme than for the host-side counter-
part. Therefore, previous SSD-side deduplication schemes have
proposed the utilization of this gained capacity as temporary
space for garbage collection or wearleveling [2], [3].

To address this limitation, this paper proposes a novel
deduplicating FTL scheme named DRACO (deduplication of
redundant data and compression of them) that can provide the
deduplicated capacity as permanent storage space for the file
system level. As shown in Figure 1, DRACO secures necessary
space by compressing cold blocks, which contain infrequently
accessed data, when capacity overflow occurs as a result of
broken deduplication. The compressed data is delivered to the
host system after decompression when they are requested. The
compressed data are restored when sufficient surplus space is
acquired by another round of deduplication.

e B. Seo is with the Department of Computer Science, Korea Advanced
Institute of Science and Technology, Rep. of Korea, 305-701.
E-mail: bkseo@calab.kaist.ac.kr

o |. Lee and E. Seo are with the College of Information and Communication
Engineering, SungKyunKwan University, 440-746.
E-mail: joonwon@skku.edu and euiseong@skku.edu

FTL Solid State Drive)

Deduplication

Garbage Collection

NAND
v
Compression Flash
Memory

1 Decompression I

Fig. 1. DRACO FTL Data flows and operations.

The proposed approach requires advance knowledge of the
compression rate of the stored data to determine the amount
of capacity to provide to the file system. We found that the
compression rate of the incoming data stream can be efficiently
predicted with byte entropy [4]. The proposed scheme provides
a safe amount of gained space considering the error distribu-
tion of the compression ratio prediction.

Commodity file systems exist that provide on-line resizing.
Such file systems can utilize the provided space for storing
data after resizing themselves according to capacity changes.
The remaining surplus space, which is not provided to the file
system layer, can still be utilized for garbage collection or wear-
leveling, as outlined in existing research.

2 DEDUPLICATION

To find identical data, the SSD must calculate the content hash
keys from incoming data chunks and look up a hash table
using these keys. Multi-referenced chunks must be carefully
handled to make every reference consistent. These operations
incur significant performance drawbacks. We therefore de-
signed the proposed deduplication scheme to be performance
oriented.

Fortunately, SSD characteristics enable performance benefits
from deduplication. NAND ash memory performs write op-
erations 7 to 8 times slower than read operations. Therefore,
reduction of ash memory writes by deduplication can mitigate
deduplication overhead. In fact, previous studies have shown
that deduplication can yield even better performance in some
workloads [3], [2].

2.1 Address mapping

To minimize overhead, DRACO aligns the deduplication unit
with the I/O operation unit, which is a ash memory page. A
page is typically two to eight KB in size, which is the typical
chunk size used by existing deduplication algorithms.

Because duplicated pages can exist anywhere in an SSD, a
page-level FTL should be used to appropriately handle the
multi-referenced mappings caused by deduplication. There-
fore, DRACO employs a variation of the demand-based FTL
(DFTL) scheme [5] for the address translation to map a logical
block address (LBA) to a flash page address; this is called
address mapping. As with DFTL, the mapping table is stored
in the flash memory, and a part of the table is cached in DRAM
to accelerate address translation.

The deduplication mechanism used in DRACO performs the
same as DFTL for processing read requests because there are
no changes in the processing path for a read request. Only
write requests require additional operations for deduplication.

2.2 Content keys

Hash functions, such as SHA-1 or MD5, which have been
commonly used in previous studies, are excessively heavy for
embedded processors in an SSD. Calculating a SHA-1 content
key from a page takes hundreds of microseconds, nearing the
latency of reading a page from flash memory, even when the
SSD features a SHA-1 encoding chip. Moreover, the keys in
these algorithms do not comfortably fit in the small capacity
SDRAM of an SSD. Therefore, deduplication of partial data has
been suggested [3]; however, it is obvious that it harms the
deduplication ratio. Therefore, byte-by-byte comparison after
a weak-but-fast hash match can be more effective than using
the aforementioned strong hash functions alone.

SSDs use an error correction code, such as CRC32, to detect
and correct bit ips in the ash memory to guarantee data
integrity. This code can be used as a content key, although
it has higher probability of collision than SHA-1. The hash
collision can be resolved by a byte-by-byte comparison of the
pages in question. Based on this rationale, DRACO adopts
CRC32 values as content keys to minimize the overhead of
deduplication.

2.3 Content mapping table

The content mapping table manages the mapping between a
content key and the corresponding ash page address. DRACO
finds a ash page with a content key using the content mapping
table. To expedite this searching operation, a hash structure,
which uses the content keys as its hash keys, is applied. A
bucket of the hash table is a set of mapping entries with the
same hash key. Each bucket is pointed to by an entry in the
external hash table.

The size of the content mapping table is as large as the size of
the address mapping table of the FTL. This is because all valid
ash pages have their own entries in the content mapping table,
as they do in the address mapping table. Therefore, it should
be stored in ash memory because it is unable to fit in the small
DRAM of the SSD. Content keys are evenly dispersed over the
table; their access pattern shows little locality because the keys
are hashed values. This factor lowers the merit of caching them
in DRAM.

When a page with new content arrives, the content mapping
table must be updated. Because the table is located in the

ash memory, this update produces an additional ash write
operation, which takes significant time. To reduce the perfor-
mance impact from table update operations, DRACO stores
the content mapping table in a log-structured way. A bucket
is typically much smaller than a ash page, which is the unit
of the write request. Consequently, when an update in the
bucket occurs, the updated bucket is written together with
other updated buckets to comprise a whole page. This can
significantly reduce the number of ash write operations caused
by content mapping table management.

2.4

Deduplication complicates garbage collection by the FTL be-
cause a ash page can be shared by multiple LBAs. Moreover,
moving a ash page during garbage collection accompanies
remapping of all relevant LBA entries. This is practically
impossible because of the space and time complexity of dis-
covering all referencing LBAs for a ash page. For this rea-
son, DRACO adopts in-place garbage collection [6]; in-place
garbage collection does not change the address of a flash page.

The in-place garbage collector copies valid pages from an
erasure block to a clean block; it then discards invalid ones
before erasing the block. To this end, it must be able to
determine whether a page is valid. The DFTL uses a reverse
mapping recorded in the out-of-band (OOB) area to check the
validity of a page. However, DRACO can no longer use the
reverse mapping because a page can be referenced by multiple
LBAs. A straightforward solution, which keeps track of the
reference counts for each page with a data structure located
in DRAM, is impractical because that data structure would be
too large.

Therefore, to check the validity of a ash page, DRACO
maintains a bitmap in DRAM. When a page is allocated to
an LBA, the corresponding bit in the bitmap is set to mark the
page as valid. However, when a mapping between an LBA and
a ash page is broken, the bit for the ash page is not touched
because the page may be valid by mapping from other LBAs.
To identify invalid pages, DRACO periodically reconstructs the
validity bitmap with garbage collection. Initially, the bitmap is
fully cleared. DRACO scans the address mapping table and sets
the bit for a page of the mapping entry. When the scanning is
complete, DRACO switches the new bitmap with the former
one. In turn, the in-place garbage collector can identify invalid
pages based on this current bitmap. If the page size is 4 KB,
the validity bitmap will take only 0.003% of the SSD capacity.

In-place garbage collection

3 COMPRESSION

The garbage collector in DRACO begins compressing pages
when the number of free pages falls below the predefined
threshold, C,,. Additionally, a decompression threshold exists
that is larger than C,,. If the number of free pages is above
Cop, the decompression of the compressed pages begins.

The garbage collector should choose victim erasure blocks
that minimize the performance impact and maximize the
acquired free space. To achieve this, both compression ratio
prediction and hot-cold page separation are applied for victim
selection.

The advance knowledge of data size after compression not
only helps in selecting a victim block for compression, it also
enables safe capacity management, as introduced in Section 4.

Because actual compression of data requires unacceptably
heavy computation, we developed a solution based on byte

Entropy”4
Observed ratio

Entropy

100

Compression ratio (%)

0 500 1000 1500 2000 2500 3000 3500 4000

Data samples sorted by compression ratio

Fig. 2. Comparison between predicted and actual compression
ratio.

entropy H [4]. Byte entropy of a data block has been used
to approximate the compression ratio of data when using
Huffman encoding. The byte entropy calculation routine runs
very quickly in O(n) time, which is well suited to the low-
power embedded processor inside the SSD. However, in terms
of the popular zip algorithm, the correlation between byte
entropy and compression ratio becomes low because modern
compression algorithms typically build a dictionary of fre-
quently appearing strings to further reduce the size of the
compressed data.

Based on several experiments, we empirically determined
that H* shows a strong correlation to the zip algorithm al-
gorithm compression ratio. Figure 2 shows the relationship
obtained from a sample file set of diverse file types including
text, multimedia, executables, and database files. The actual
compression ratio of a sample was an average of 5.3% larger
than H*, and the standard deviation of the differences was
9.32%. Based on this observation, DRACO uses H* for predic-
tion of the compression ratio of an erasure block.

Reading a compressed page requires immediate decompres-
sion of the page during the request handling, which also
degrades read latency. Therefore, the victim selection must be
able to classify cold pages, which are infrequently access pages,
from hot pages.

DRACO keeps track of access counts for every erasure block.
The access count unit is not a page; it is an erasure block. This
is because the block-level access count will drastically compact
the memory requirement for the access counters. Moreover,
a significant spatial locality typically exists among pages in
the same erasure block. Thus, pages in the same block are
considered as sharing the same access frequency. The access
count is halved with each iteration of garbage collection to
favor the most recent accesses. A page is identified as a cold
one when the access count of the page is below a threshold,
which is easily determined by the average access count of all
blocks.

The FTL compresses together a group of victim pages into
a chunk to maximize the compression ratio [7]. A chunk is
stored in contiguous flash memory pages. When a flash page
is compressed, the address of the page must be appropriately
changed to point to the location in the compressed chunk.
Because the compression of a page inevitably changes its
address, remapping of all relevant address translation entries
must be followed. The issue of discovering all referencing LBAs
for a compressed page again arises. Therefore, the address

remapping is postponed until the garbage collection operation.

To efficiently identify and locate a compressed page, the
addressing scheme should be modified accordingly. The loca-
tion of a compressed page, which belongs to a chunk, can be
expressed as the tuple of the page address of the chunk; it is
the offset of the page in the chunk, and the compressed size of
the page. This tuple is encoded and packed into a 64-bit entry
of the address mapping table. The FTL can therefore identify
whether the target page is compressed and locate it without
additional data structures.

An in-memory table for remapping is used by the garbage
collector to identify the page to remap during garbage col-
lection. The entry of this table is created at each compression
operation. The garbage collector removes an entry from the
table after the remapping for the respective entry is complete.

The decompression delay during read operations of com-
pressed pages can be fairly compensated by the reduced 1/0
latency because the number of actual pages to read is decreased
by the compression [7].

4 CAPACITY MANAGEMENT

The capacity of the DRACO SSD frequently changes according
to the duplicity of the stored data. Accordingly, the operating
system should reflect the change to effectively utilize the
acquired capacity. Some file systems or volume management
systems, such as the logical volume manager (LVM), provide
dynamic resizing of file system. Operating systems currently
support sufficient functionality for dynamically resizing of the
file systems. Based on these features, we propose the dynamic
capacity management function for host-side operating systems.

The proposed method uses the device driver in the operating
system to monitor capacity changes of the underlying SSD.
The device driver invokes the resize routine when a capacity
change occurs. A special command to efficiently monitor the
capacity of the SSD should be added to the storage interface,
such as SATA. The file system mounting routine registers a
callback function, which enables the device driver to invoke
for resizing.

The provided capacity of the SSD should remain in a safe
range to avoid a catastrophic capacity shortage. The safe
amount of capacity is defined as the maximum capacity that
DRACO can accommodate by compressing all stored data. This
amount evidently depends on the compression ratio of the
stored data.

Assuming that the stored data is not at all compressed,
the maximum available capacity of an SSD, Cfree, can be
defined as Ceiean + Cinvatia + Cuncomp X (1 — reomp) Where
Colean, Cinvalid, Cuncomp and Tcomp are the number of clean
pages, invalidated pages, valid pages and estimated average
compression ratio, respectively.

Because the error of the compression ratio estimation follows
a normal distribution, 7com; is recalculated with consideration
of the allowable confidence level, which determines the prob-
ability of capacity shortage occurrence in case all data must
be compressed. From the samples in Figure 2, we determined
that reomp = avg(H*)+0.053 +2.58 x 0.0932 with a confidence
level of 99%.

Capacity shortage occurs when Cy, .. becomes zero while
the actual compresstion ratio after compressing all stored data
is greater than rcomp. This occurs in extremely rare cases.
However, such cases would be resolved by offloading to other
storage devices, which is an ongoing research issue.

| % Data —» Control —» Reference |

File system

Virtual block device driver

resize

Flash Translation Layer
Compression Decompression
Engine Engine

\“/ NAND Flash Memory
—

Address Map Content Map

Fig. 3. DRACO FTL architecture.

The file system resizing overhead can be reduced by re-
designing the file system. Most file system resize routines can
easily expand their capacity by appending the additional ca-
pacity to the existing space. Shrinking the file system, however,
is a much heavier process because out-of-bound data should
be migrated. This can be remedied by the modification of
file systems such that it becomes aware of the extra space
and manages the acquired space considering the shrinking
operation. We have earmarked this issue for future research.

5 EVALUATION

We implemented an SSD simulator as a virtual block device
in the Linux kernel. The simulator is composed of the logical
units, as shown in Figure 3. The simulated FIL implements
the deduplication and selective compression mechanism of
DRACO. The virtual block device driver provides the capacity
management interface to the file system.

We conducted an experiment in which a number of the Linux
kernel source Git repository, which contains numerous Linux
kernel versions, was copied to the simulated SSD. The Linux
source tree contains approximately 8% of duplicated data; 35%
of flash pages were deduplicated between each version of linux
source trees.

The provided capacity of the simulated SSD increased as
data was duplicated with respect to the capacity formula in
Section 4. We plotted the expected capacity in the confidence
level of both 95% and 99%, as shown in Figure 4.

In this experiment, the file system size continually grew ac-
cording to the available SSD capacity. DRACO began compress-
ing data when the capacity shortage occurred. The expected
capacity tended to grow quickly because the compression ratio
was conservatively estimated; accordingly, the compression
operation supplied more free space than expected. At the end
of the experiment, it was possible to provide 69% greater
capacity than the original SSD capacity with a confidence level
of 99%.

To analyze the performance impact by DRACO, we con-
ducted the same experiment with the DFTL simulator. The SSD
capacity for the original DFTL was twice that of the one used in
the DRACO experiment. The comparison showed that DRACO
is 5% faster than the DFTL because DRACO successfully
reduced many flash memory writes by deduplication.

6 CONCLUSION

In previous research, a few deduplicating FTLs that exploit
the rapid random access and powerful embedded systems
of SSDs have been proposed. However, the extra capacity
gained from deduplication cannot be used for file systems

——Used --= Pages written Duplicated
— Compressed -+ Capacity(95%) — - Capacity(99%)
200

Normalized amount of data (%)

0

Amount of unique page write

Fig. 4. Capacity changes in DRACO

because a capacity shortage may occur due to the copy-on-
write operations induced by an update of deduplicated data.
Therefore, to date, the acquired capacity has been used only
for internal operations of SSDs.

To address this issue, we have proposed a novel FTL that can
provide the extra capacity acquired from deduplication to the
upper layer file systems by resolving the capacity overow issue.
The proposed FTL provides a safe amount of extra capacity
based on the dynamic compression rate prediction of the stored
data. It secures space required for resolving capacity overow
by compressing cold data.

The proposed scheme is expected to provide a substantial
amount of extra capacity for the file system layer with negli-
gible performance overhead. However, capacity shortage may
still occur in the proposed scheme when almost all data must
be compressed while the compression rate prediction error
simultaneously exceeds the predefined confidence interval.
This would be an extremely rare case; nevertheless, we are
conducting research on capacity ofoading to remote storage
devices, which is expected to eliminate this risk.

REFERENCES

[1] D. T. Meyer and W.]J. Bolosky, “A Study of Practical Deduplica-
tion,” ACM Transactions on Storage, vol. 7, no. 4, pp. 1-20, Jan. 2012.
[2] A. Gupta, R. Pisolkar, B. Urgaonkar, and A. Sivasubramaniam,
“Leveraging Value Locality in Optimizing NAND Flash-based
SSDs,” in Proceedings of the 9th USENIX Conference on File and
Storage Technologies. San Jose, CA: USENIX Association, 2011, pp.
91-103.
F. Chen, T. Luo, and X. Zhang, “CAFTL: A Content-Aware Flash
Translation Layer Enhancing the Lifespan of Flash Memory Based
Solid State Drives,” in Proceedings of the 9th USENIX Conference on
File and Storage Technologies, ser. FAST’11. San Jose, CA: USENIX
Association, 2011, pp. 77-90.
[4] C. E. Shannon, “A Mathematical Theory of Communication,” The
Bell System Technical Journal, vol. 27, pp. 379-423, 1948.
A. Gupta, Y. Kim, and B. Urgaonkar, “DFTL: a flash translation
layer employing demand-based selective caching of page-level ad-
dress mappings,” in ASPLOS '09: Proceeding of the 14th International
Conference on Architectural Support for Programming Languages and
Operating Systems. New York, NY, USA: ACM, 2009, pp. 229-240.
[6] Y. Zhang, L. P. Arulraj, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau, “De-indirection for Flash-based SSDs with Nameless
Writes,” in Proceedings of the 10th USENIX Conference on File and
Storage Technologies. San Jose, CA: USENIX Association, Feb. 2012,
pp. 1-16.
Y. Park and J.-s. Kim, “zFTL: Power-Efficient Data Compression
Support for NAND Flash-based Consumer Electronics Devices,”
IEEE Transactions on Consumer Electronics, vol. 57, no. 3, pp. 1148-
1156, Aug. 2011.

[3

—_

5

—_

[7

—

