
Cache scheme of shared-buffer mappings for
energy-efficiency of mobile devices

Jinkyu Jeong, Joonwon Lee and Euiseong Seo✉
ELECT
The repetitive mapping and unmapping operations of shared buffers,
which are used for data sharing among applications and devices, incur
significant processing overhead. Thus, a significant amount of energy
is consumed during video playback, especially when physical address
space becomes heavily fragmented after a large number of application
instances. A caching scheme that preserves mapping information of
the shared buffer for later use of the same buffer mapping is proposed.
The evaluation shows that the proposed scheme reduces processor
utilisation by ∼64% and energy consumption by ∼17% during video
playback compared with that of commercial smartphone systems.
Introduction: Video playback is an essential feature of mobile devices,
such as smartphones and tablets. It is frequently regarded as a standard
for measuring the energy efficiency and battery lifetime of a gadget
because users typically play videos for extended periods of time.

Video play requires collaboration of the central processing unit
(CPU), multimedia decoder and display device. The decoder is a hard-
ware component that decodes compressed video data to original frames.
Mobile devices are equipped with decoders to secure real-time decoding
performance and energy efficiency. Video playback is a continual rep-
etition of decoding of compressed video data and rendering of
decoded frames. In each repetition, the application transfers the com-
pressed video from the file system to the decoder; the decoder then
sends the decoded frames to the display.

For data sharing among components, the buffer sharing scheme [1]
has been widely used. In this scheme, when a buffer is allocated, a data-
sharing entity, such as a process or device driver, can map the buffer to
its virtual (or input/output (I/O)) address space to share the buffer. The
actual data transfer between the buffer and device is accomplished
through direct memory access (DMA). The IO-memory management
unit (IO-MMU), which translates a virtual address of a peripheral
device to the corresponding physical address, is pervasive in modern
mobile systems. Therefore, the DMA commands are built not with phys-
ical but with virtual addresses of the buffer. As a result, a data transfer to
or from the buffer requires a single DMA command even when the
buffer is scattered over multiple discontiguous physical pages.

Conventional video players allocate a video buffer to deliver the com-
pressed video data to the decoder, as shown in Fig. 1. This video buffer
is first mapped to the address space of the video player. The video player
unmaps the buffer after it fills the buffer with the compressed video data.
In turn, the video buffer is mapped to the address space of the decoder.
While the decoder reads the video buffer, the video player allocates and
maps another video buffer for subsequent data. The second video buffer
is read by the decoder after the decoder completes reading the first video
buffer. This double buffering improves the processor and decoder util-
isation by pipelining. Double buffering is also applied to the frame
buffers, which are used to deliver the decoded frames to the display.

frame
buffer 1

frame
buffer 2

video
buffer 1

video
buffer 2

display device

HW decoder

I/O address
 space

physical
memory

I/O address
 space

frame
buffer 1

frame
buffer 2

video
buffer 1

video
buffer 2

a b

display device

HW decoder

Fig. 1 Conventional buffer management for video playback

a Displaying 1st frame
b Displaying 2nd frame

When the device drivers receive a read/write request to a shared
buffer, they map the buffer to the address spaces of the corresponding
devices, process the request and finally unmap the buffer, although
the buffer may need to be mapped again for forthcoming requests.
This single-use mapping convention is based on the fact that the under-
lying device drivers, which actually map the shared buffer to the device
address spaces, do not know whether they will use the buffer again.

Contiguous physical pages allocated for a buffer can be grouped into
and managed as a super-page, whose size ranges from a few hundred
RONICS LETTERS 28th May 2015 Vol. 51 N
kilobytes to a few megabytes. A super-page is the unit of mapping
and unmapping operations. Therefore, to improve the performance of
DMA operations and to reduce the overhead for mapping and unmap-
ping operations [2], the kernel attempts to allocate as few pages as poss-
ible for the buffer by preferring super-pages. However, if the physical
address space is highly fragmented, the kernel has no option but to allo-
cate for the buffer a set of normal pages rather than super-pages.

Using a mobile system for a long period of time makes its physical
memory highly fragmented due to excessive allocation and deallocation
of 4 kB normal pages for repetitive application instantiations [3]. The
experimental results illustrated in Fig. 2 show that the physical
address space of the system described in Table 1 was heavily fragmented
after 1000 times of application instantiations following the LiveLab
usage model [4]. Therefore, a large portion of free memory, which is
marked as the unusable index in Fig. 2, was unavailable to be allocated
as 16 kB or 1 MB super-pages because of the fragmentation.

0

0.5

1.0

un
us

ab
le

in
de

x
un

us
ab

le
in

de
x

16 KB page

0

0.5

1.0

1 MB page

0

50

100

0 10 000 20 000 30 000 40 000

fr
ee

 m
em

or
y,

M
B

time, s

Fig. 2 Ratio of unusable memory to free memory for super-page requests

Table 1: System configuration for evaluation
Hardware
o. 11
System on Chip
pp. 830–832
Samsung Exynos 5250
CPU
 1.7 GHz dual Cortex-A15
random access memory
 2 GB LPDDR3
Software
operating system
 Android 4.2.2
kernel
 Linux 3.4.5
application
 Android media player
Video file
Codec
 H.264
res./frames per second
 1920 × 1080/30 frames per second
frame/video buffer
 46 MB/17 MB
The physical memory fragmentation severely affected the perform-
ance of the video playback. The iommu_map() function, which
handles mapping/unmapping of shared buffers, contributed only
0.18% of CPU utilisation during video playback of a 1080i MP4 file
when the physical memory was not fragmented. However, the CPU util-
isation of the function increased to 13.5%, which was approximately a
half of the total CPU utilisation during the video playback. A similar
mapping overhead increase occurred with a camera application, which
also uses shared buffers to deliver frame data captured from the
camera to the application and encoder. The CPU consumption of the
mapping function increased from 0.17 to 8.61% under severe memory
fragmentation. This high CPU utilisation not only affects the perform-
ance, but also significantly reduces the battery life.

In this Letter, we propose a buffer-mapping cache scheme that
reduces the processing overhead incurred by mapping and unmapping
of shared buffers under memory fragmentation. We evaluate the pro-
posed scheme in terms of processor utilisation and power consumption.

Mapping cache: Fig. 3 depicts an overview of the proposed mapping
cache scheme. The mapping cache, preserves the mapping table for
the buffer. This occurs even after a sharing entity unmaps the buffer
from its address space so that the mapping table will be used again
when the entity requests the mapping of the same buffer. Since the
reconstruction of the mapping table is not necessary when using the
cached mapping data, the mapping overhead becomes marginal, even
under a heavy memory fragmentation condition.

When the kernel generates a buffer, it constructs a gather/scatter table,
which is the list of physical pages allocated for the buffer. The gather/
scatter table is referred to when a sharing entity maps the buffer. The
gather/scatter table for a buffer is destroyed when the corresponding
buffer is removed. The mapping cache uses the status of the gather/



scatter table for a buffer to determine whether to keep or discard
mapping data for the buffer.

cached
mapping

cached
mapping

cached
mapping

cached
mapping

cached
mapping

cached
mapping

frame
buffer 1

frame
buffer 2

frame
buffer 2

video
buffer 1

video
buffer 2

video
buffer 2

I/O address
 space

physical
memory

I/O address
 space

display device

HW decoder

a b

display device

HW decoder

frame
buffer 1

video
buffer 1

Fig. 3 Use of buffer-mapping cache for video playback

a Displaying 1st frame
b Displaying 2nd frame

When a sharing entity requests mapping of a buffer, the kernel con-
structs a mapping table from the virtual to physical addresses using
the gather/scatter table. This table is searched to retrieve the physical
addresses of the DMA targets by the IO-MMU. Each sharing entity,
including devices and processes, has its own virtual address space.
Therefore, the mapping cache contains a separate mapping table for
each sharing entity that has requested mapping of the buffer at least
once. The size of the mapping table is linear to the number of normal
or super-pages; each entry is 4B.

As mentioned, the proposed cache scheme preserves the mapping
table instead of removing it when the sharing entity unmaps the
buffer and the gather/scatter table for the buffer remains. An entry in
the mapping cache is actually a metadata structure for each preserved
mapping table. The metadata structure contains information about the
address of the corresponding gather/scatter table and the owner entity
of the mapping table. When a gather/scatter table is released from phys-
ical memory, all entries corresponding to the gather/scatter table are
together discarded from the mapping cache.

When the kernel receives a buffer-mapping request, it first searches
for a matching entry in the cache. The kernel simply reuses the matching
mapping table if it exists in the cache. When a change occurs in the
gather/scatter table due to a resizing operation of the buffer, the
mapping cache records the change in the relevant cache entries. In
turn, the kernel adjusts the cached mapping tables accordingly when
they are retrieved for reuse. This approach significantly reduces the over-
head for mapping of a resized buffer because only the expanded or con-
tracted mapping entries must be manipulated rather than a total
reconstruction.

Yassour et al. [5] proposed an approach that prefetches or caches the
mappings of the DMA target pages in the virtualised environment with
IO-MMU to improve the I/O virtualisation performance. Unlike that
approach, our scheme makes caching decisions at the granularity of
shared buffers simply based on their status because the goal is to
reduce the overhead for mapping of shared buffers.

Performance evaluation: We implemented the mapping cache scheme
in the system described in Table 1 for evaluation. We measured the pro-
cessor utilisation and power consumption during video playback with
and without the mapping cache under both heavy fragmentation and
no-fragmentation conditions. The fragmentation condition was simu-
lated by prohibiting the use of super-pages for the buffer allocation.
The processor utilisation was obtained from /proc/stat every second.

Fig. 4 shows the time series of the processor utilisation under different
setups. The utilisation remained calm most of the time; however, there
were occasional fluctuations due to the event handling for system man-
agement tasks that were irrelevant to the video playback. The video
playback began at the 20 second point. The average utilisation was
10.2% under no fragmentation and 26.5% under heavy fragmentation.
This 16% difference was predominantly caused by the mapping over-
head, as stated. However, the gap was reduced to only 1.2% with the
proposed scheme, which was between 10 and 11.18%.

The time series of the power consumption during video playback,
which was obtained from the battery sensor, is illustrated in Fig. 5.
The device consumed 3254 μW on average during video playback
without both memory fragmentation and the mapping cache. It con-
sumed 3912 μW, which was a 20% greater value, under heavy
ELECTRONICS LETTERS
memory fragmentation. The mapping cache suppressed the average
power consumption to 3223 and 3297 μW under no-fragmentation
and heavy fragmentation conditions, respectively. The difference
between the cases without and with the mapping cache scheme was
16% under heavy fragmentation condition.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
P

U
 u

til
is

at
io

n

time, s
0 50 100 150 200

not-fragmented
fragmented

not-fragmented + mappingcache
fragmented + mappingcache

Fig. 4 Processor utilisation during video playback under different conditions

time, s

2000

2500

3000

3500

4000

4500

5000

0 50 100 150 200

po
w

er
, u

W

not-fragmented
fragmented

not-fragmented + mappingcache
fragmented + mappingcache

Fig. 5 Power consumption during video playback under different conditions

Conclusion: The physical memory of mobile consumer electronics,
which are typically run for long periods of time, become heavily frag-
mented after numerous repetitions of application instantiations and
executions. In this Letter, we have analysed the shared-buffer-mapping
overhead under memory fragmentation, and proposed a buffer-mapping
cache scheme to remedy the extremely high mapping overhead. Our
evaluation shows that the proposed scheme saves up to ∼64% of pro-
cessor utilisation and reduces up to ∼17% of energy consumption
during video playback. Considering that video playback is an essential
and typically long-running feature of mobile devices, we believe that
the proposed scheme not only improves multitasking performance, but
also significantly extends battery life for video playback.

Acknowledgment: This research was supported partly by the Industrial
Convergence Source Technology Development Program through the
Ministry of Science, ICT and Future Planning, Korea (10044313) and
partly by the Basic Science Research Program through the National
Research Foundation of Korea (NRF) funded by the Ministry of
Education (NRF-2014R1A1A2054658).

© The Institution of Engineering and Technology 2015
21 January 2015
doi: 10.1049/el.2015.0244
One or more of the Figures in this Letter are available in colour online.

Jinkyu Jeong, Joonwon Lee and Euiseong Seo (Sungkyunkwan
University, Suwon, Republic of Korea)

✉ E-mail: euiseong@skku.edu

References

1 Corbet, J.: ‘Sharing buffers between devices’, LWN.net, 2011, Article
No. 454389. Available at http://www.lwn.net/Articles/454389

2 Amit, N., Ben-Yehuda, M., and Yassour, B.: ‘IOMMU: strategies for
mitigating the IOTLB bottleneck’, Lect. Notes Comput. Sci., 2012,
6161, pp. 256–274

3 Gorman, M., and Whitcroft, A.: ‘The what, the why and the where to of
anti-fragmentation’. Ottawa Linux Symp., Ottawa, Canada, July 2006,
pp. 369–384

4 Shepard, C., Rahmati, A., Tossell, C., Zhong, L., and Kortum, P.:
‘LiveLab: measuring wireless networks and smartphone users in the
field’, ACM SIGMETRICS Perform. Eval. Rev., 2010, 38, (3), pp. 15–20

5 Yassour, B., Ben-Yehuda, M., and Wasserman, O.: ‘On the DMA
mapping problem in direct device assignment’. Proc. SYSTOR’ 10,
Haifa, Israel, May 2010 Article No. 18, 2010
28th May 2015 Vol. 51 No. 11 pp. 830–832


